Bayesian Design of Clinical Trials Using Joint Cure Rate Models for Longitudinal and Time-to-Event Data

被引:0
|
作者
Jiawei Xu
Matthew A. Psioda
Joseph G. Ibrahim
机构
[1] University of North Carolina at Chapel Hill,Department of Biostatistics
来源
Lifetime Data Analysis | 2023年 / 29卷
关键词
Bayesian design; Clinical trials; Joint cure rate models; Longitudinal outcomes; Sampling prior;
D O I
暂无
中图分类号
学科分类号
摘要
For clinical trial design and analysis, there has been extensive work related to using joint models for longitudinal and time-to-event data without a cure fraction (i.e., when all patients are at risk for the event of interest), but comparatively little treatment has been given to design and analysis of clinical trials using joint models that incorporate a cure fraction. In this paper, we develop a Bayesian clinical trial design methodology focused on evaluating the treatment’s effect on a time-to-event endpoint using a promotion time cure rate model, where the longitudinal process is incorporated into the hazard model for the promotion times. A piecewise linear hazard model for the period after assessment of the longitudinal measure ends is proposed as an alternative to extrapolating the longitudinal trajectory. This may be advantageous in scenarios where the period of time from the end of longitudinal measurements until the end of observation is substantial. Inference for the time-to-event endpoint is based on a novel estimand which combines the treatment’s effect on the probability of cure and its effect on the promotion time distribution, mediated by the longitudinal outcome. We propose an approach for sample size determination such that the design has a high power and a well-controlled type I error rate with both operating characteristics defined from a Bayesian perspective. We demonstrate the methodology by designing a breast cancer clinical trial with a primary time-to-event endpoint where longitudinal outcomes are measured periodically during follow up.
引用
收藏
页码:213 / 233
页数:20
相关论文
共 50 条
  • [1] Bayesian Design of Clinical Trials Using Joint Cure Rate Models for Longitudinal and Time-to-Event Data
    Xu, Jiawei
    Psioda, Matthew A.
    Ibrahim, Joseph G.
    [J]. LIFETIME DATA ANALYSIS, 2023, 29 (01) : 213 - 233
  • [2] Bayesian design of clinical trials using joint models for longitudinal and time-to-event data
    Xu, Jiawei
    Psioda, Matthew A.
    Ibrahim, Joseph G.
    [J]. BIOSTATISTICS, 2022, 23 (02) : 591 - 608
  • [3] Bayesian functional joint models for multivariate longitudinal and time-to-event data
    Li, Kan
    Luo, Sheng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 129 : 14 - 29
  • [4] Boosting joint models for longitudinal and time-to-event data
    Waldmann, Elisabeth
    Taylor-Robinson, David
    Klein, Nadja
    Kneib, Thomas
    Pressler, Tania
    Schmid, Matthias
    Mayr, Andreas
    [J]. BIOMETRICAL JOURNAL, 2017, 59 (06) : 1104 - 1121
  • [5] Joint longitudinal and time-to-event cure models for the assessment of being cured
    Barbieri, Antoine
    Legrand, Catherine
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (04) : 1256 - 1270
  • [6] Bayesian Change-Point Joint Models for Multivariate Longitudinal and Time-to-Event Data
    Chen, Jiaqing
    Huang, Yangxin
    Tang, Nian-Sheng
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2022, 14 (02): : 227 - 241
  • [7] Sequential Monte Carlo methods in Bayesian joint models for longitudinal and time-to-event data
    Alvares, Danilo
    Armero, Carmen
    Forte, Anabel
    Chopin, Nicolas
    [J]. STATISTICAL MODELLING, 2021, 21 (1-2) : 161 - 181
  • [8] Joint Models for Incomplete Longitudinal Data and Time-to-Event Data
    Takeda, Yuriko
    Misumi, Toshihiro
    Yamamoto, Kouji
    [J]. MATHEMATICS, 2022, 10 (19)
  • [9] Joint models for longitudinal and time-to-event data in a case-cohort design
    Baart, Sara J.
    Boersma, Eric
    Rizopoulos, Dimitris
    [J]. STATISTICS IN MEDICINE, 2019, 38 (12) : 2269 - 2281
  • [10] A Bayesian Sequential Design for Clinical Trials With Time-to-Event Outcomes
    Zhu, Lin
    Yu, Qingzhao
    Mercante, Donald E.
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2019, 11 (04): : 387 - 397