Joint longitudinal and time-to-event cure models for the assessment of being cured

被引:6
|
作者
Barbieri, Antoine [1 ,2 ]
Legrand, Catherine [1 ]
机构
[1] Catholic Univ Louvain, ISBA LIDAM, Inst Stat Biostat & Actuarial Sci, Louvain La Neuve, Belgium
[2] Univ Bordeaux, INSERM, UMR1219, Bordeaux, France
关键词
Joint modeling; linear mixed model; mixture cure model; Markov Chain Monte Carlo methods; prediction; HIV; LATENT CLASS MODELS; R PACKAGE; SURVIVAL; OUTCOMES; PREDICTION; CANCER;
D O I
10.1177/0962280219853599
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Medical time-to-event studies frequently include two groups of patients: those who will not experience the event of interest and are said to be "cured" and those who will develop the event and are said to be "susceptible". However, the cure status is unobserved in (right-)censored patients. While most of the work on cure models focuses on the time-to-event for the uncured patients (latency) or on the baseline probability of being cured or not (incidence), we focus in this research on the conditional probability of being cured after a medical intervention given survival until a certain time. Assuming the availability of longitudinal measurements collected over time and being informative on the risk to develop the event, we consider joint models for longitudinal and survival data given a cure fraction. These models include a linear mixed model to fit the trajectory of longitudinal measurements and a mixture cure model. In simulation studies, different shared latent structures linking both submodels are compared in order to assess their predictive performance. Finally, an illustration on HIV patient data completes the comparison.
引用
收藏
页码:1256 / 1270
页数:15
相关论文
共 50 条
  • [1] Boosting joint models for longitudinal and time-to-event data
    Waldmann, Elisabeth
    Taylor-Robinson, David
    Klein, Nadja
    Kneib, Thomas
    Pressler, Tania
    Schmid, Matthias
    Mayr, Andreas
    [J]. BIOMETRICAL JOURNAL, 2017, 59 (06) : 1104 - 1121
  • [2] Joint models for multiple longitudinal processes and time-to-event outcome
    Yang, Lili
    Yu, Menggang
    Gao, Sujuan
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (18) : 3682 - 3700
  • [3] Bayesian Design of Clinical Trials Using Joint Cure Rate Models for Longitudinal and Time-to-Event Data
    Jiawei Xu
    Matthew A. Psioda
    Joseph G. Ibrahim
    [J]. Lifetime Data Analysis, 2023, 29 : 213 - 233
  • [4] Bayesian Design of Clinical Trials Using Joint Cure Rate Models for Longitudinal and Time-to-Event Data
    Xu, Jiawei
    Psioda, Matthew A.
    Ibrahim, Joseph G.
    [J]. LIFETIME DATA ANALYSIS, 2023, 29 (01) : 213 - 233
  • [5] Joint longitudinal and time-to-event models for multilevel hierarchical data
    Brilleman, Samuel L.
    Crowther, Michael J.
    Moreno-Betancur, Margarita
    Novik, Jacqueline Buros
    Dunyak, James
    Al-Huniti, Nidal
    Fox, Robert
    Hammerbacher, Jeff
    Wolfe, Rory
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (12) : 3502 - 3515
  • [6] Joint Models for Incomplete Longitudinal Data and Time-to-Event Data
    Takeda, Yuriko
    Misumi, Toshihiro
    Yamamoto, Kouji
    [J]. MATHEMATICS, 2022, 10 (19)
  • [7] Penalized spline joint models for longitudinal and time-to-event data
    Pham Thi Thu Huong
    Nur, Darfiana
    Branford, Alan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (20) : 10294 - 10314
  • [8] Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension
    Molei Liu
    Jiehuan Sun
    Jose D. Herazo-Maya
    Naftali Kaminski
    Hongyu Zhao
    [J]. Statistics in Biosciences, 2019, 11 : 614 - 629
  • [9] Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension
    Liu, Molei
    Sun, Jiehuan
    Herazo-Maya, Jose D.
    Kaminski, Naftali
    Zhao, Hongyu
    [J]. STATISTICS IN BIOSCIENCES, 2019, 11 (03) : 614 - 629
  • [10] Bayesian functional joint models for multivariate longitudinal and time-to-event data
    Li, Kan
    Luo, Sheng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 129 : 14 - 29