Joint Models for Incomplete Longitudinal Data and Time-to-Event Data

被引:0
|
作者
Takeda, Yuriko [1 ]
Misumi, Toshihiro [2 ]
Yamamoto, Kouji [2 ]
机构
[1] Yokohama City Univ, Grad Sch Med, Yokohama, Kanagawa 2360004, Japan
[2] Yokohama City Univ, Sch Med, Dept Biostat, Yokohama, Kanagawa 2360004, Japan
关键词
missing data; joint model; missing at random; missing not at random; shared parameter model; longitudinal data; SHARED-PARAMETER MODELS; PATTERN-MIXTURE MODELS; MISSINGNESS;
D O I
10.3390/math10193656
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Clinical studies often collect longitudinal and time-to-event data for each subject. Joint modeling is a powerful methodology for evaluating the association between these data. The existing models, however, have not sufficiently addressed the problem of missing data, which are commonly encountered in longitudinal studies. In this paper, we introduce a novel joint model with shared random effects for incomplete longitudinal data and time-to-event data. Our proposed joint model consists of three submodels: a linear mixed model for the longitudinal data, a Cox proportional hazard model for the time-to-event data, and a Cox proportional hazard model for the time-to-dropout from the study. By simultaneously estimating the parameters included in these submodels, the biases of estimators are expected to decrease under two missing scenarios. We estimated the proposed model by Bayesian approach, and the performance of our method was evaluated through Monte Carlo simulation studies.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Boosting joint models for longitudinal and time-to-event data
    Waldmann, Elisabeth
    Taylor-Robinson, David
    Klein, Nadja
    Kneib, Thomas
    Pressler, Tania
    Schmid, Matthias
    Mayr, Andreas
    [J]. BIOMETRICAL JOURNAL, 2017, 59 (06) : 1104 - 1121
  • [2] Joint longitudinal and time-to-event models for multilevel hierarchical data
    Brilleman, Samuel L.
    Crowther, Michael J.
    Moreno-Betancur, Margarita
    Novik, Jacqueline Buros
    Dunyak, James
    Al-Huniti, Nidal
    Fox, Robert
    Hammerbacher, Jeff
    Wolfe, Rory
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (12) : 3502 - 3515
  • [3] Penalized spline joint models for longitudinal and time-to-event data
    Pham Thi Thu Huong
    Nur, Darfiana
    Branford, Alan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (20) : 10294 - 10314
  • [4] Joint Modeling of Longitudinal and Time-to-Event Data
    Jacqmin-Gadda, Helene
    [J]. BIOMETRICS, 2018, 74 (01) : 383 - 384
  • [5] Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension
    Molei Liu
    Jiehuan Sun
    Jose D. Herazo-Maya
    Naftali Kaminski
    Hongyu Zhao
    [J]. Statistics in Biosciences, 2019, 11 : 614 - 629
  • [6] Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension
    Liu, Molei
    Sun, Jiehuan
    Herazo-Maya, Jose D.
    Kaminski, Naftali
    Zhao, Hongyu
    [J]. STATISTICS IN BIOSCIENCES, 2019, 11 (03) : 614 - 629
  • [7] Bayesian functional joint models for multivariate longitudinal and time-to-event data
    Li, Kan
    Luo, Sheng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 129 : 14 - 29
  • [8] Joint latent class models for longitudinal and time-to-event data: A review
    Proust-Lima, Cecile
    Sene, Mbery
    Taylor, Jeremy M. G.
    Jacqmin-Gadda, Helene
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2014, 23 (01) : 74 - 90
  • [9] Joint modeling of longitudinal and time-to-event data: An overview
    Tsiatis, AA
    Davidian, M
    [J]. STATISTICA SINICA, 2004, 14 (03) : 809 - 834
  • [10] Joint models for longitudinal and time-to-event data in a case-cohort design
    Baart, Sara J.
    Boersma, Eric
    Rizopoulos, Dimitris
    [J]. STATISTICS IN MEDICINE, 2019, 38 (12) : 2269 - 2281