b-Chromatic Number of Cartesian Product of Some Families of Graphs

被引:0
|
作者
R. Balakrishnan
S. Francis Raj
T. Kavaskar
机构
[1] Bharathidasan University,Department of Mathematics
[2] Pondicherry University,Department of Mathematics
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
b-Chromatic number; Cartesian product; Hypercubes; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. It is known that for any two graphs G and H, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b(G \square H) \geq {\rm {max}} \{b(G), b(H)\}}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square}$$\end{document} stands for the Cartesian product. In this paper, we determine some families of graphs G and H for which strict inequality holds. More precisely, we show that for these graphs G and H, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b(G \square H) \geq b(G) + b(H) - 1}$$\end{document} . This generalizes one of the results due to Kouider and Mahéo.
引用
收藏
页码:511 / 520
页数:9
相关论文
共 50 条