b-Chromatic Number of Cartesian Product of Some Families of Graphs

被引:0
|
作者
R. Balakrishnan
S. Francis Raj
T. Kavaskar
机构
[1] Bharathidasan University,Department of Mathematics
[2] Pondicherry University,Department of Mathematics
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
b-Chromatic number; Cartesian product; Hypercubes; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. It is known that for any two graphs G and H, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b(G \square H) \geq {\rm {max}} \{b(G), b(H)\}}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square}$$\end{document} stands for the Cartesian product. In this paper, we determine some families of graphs G and H for which strict inequality holds. More precisely, we show that for these graphs G and H, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b(G \square H) \geq b(G) + b(H) - 1}$$\end{document} . This generalizes one of the results due to Kouider and Mahéo.
引用
收藏
页码:511 / 520
页数:9
相关论文
共 50 条
  • [21] THE b-CHROMATIC NUMBER OF STAR GRAPH FAMILIES
    Venkatachalam, M.
    Vernold, Vivin J.
    MATEMATICHE, 2010, 65 (01): : 119 - 125
  • [22] On the b-chromatic number of regular bounded graphs
    Amine, El Sahili
    Mekkia, Kouider
    Maidoun, Mortada
    DISCRETE APPLIED MATHEMATICS, 2015, 193 : 174 - 179
  • [23] Some comparative results concerning the Grundy and b-chromatic number of graphs
    Masih, Zoya
    Zaker, Manouchehr
    DISCRETE APPLIED MATHEMATICS, 2022, 306 : 1 - 6
  • [24] On b-chromatic Number of Prism Graph Families
    Ansari, Nadeem
    Chandel, R. S.
    Jamal, Rizwana
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (01): : 286 - 295
  • [25] On the Locating Chromatic Number of the Cartesian Product of Graphs
    Behtoei, Ali
    Omoomi, Behnaz
    ARS COMBINATORIA, 2016, 126 : 221 - 235
  • [26] Chromatic number for a generalization of Cartesian product graphs
    Kral, Daniel
    West, Douglas B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [27] Game chromatic number of Cartesian product graphs
    Bartnicki, T.
    Bresar, B.
    Grytczuk, J.
    Kovse, M.
    Miechowicz, Z.
    Peterin, I.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [28] The b-chromatic number and f-chromatic vertex number of regular graphs
    El Sahili, Amine
    Kheddouci, Hamamache
    Kouider, Mekkia
    Mortada, Maidoun
    DISCRETE APPLIED MATHEMATICS, 2014, 179 : 79 - 85
  • [29] The b-chromatic number and f-chromatic vertex number of regular graphs
    El Sahili, Amine
    Kheddouci, Hamamache
    Kouider, Mekkia
    Mortada, Maidoun
    Discrete Applied Mathematics, 2014, 179 : 79 - 85
  • [30] The b-chromatic number of power graphs of complete caterpillars
    Effantin, Brice
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2005, 8 (03): : 483 - 502