b-Chromatic Number of Cartesian Product of Some Families of Graphs

被引:0
|
作者
R. Balakrishnan
S. Francis Raj
T. Kavaskar
机构
[1] Bharathidasan University,Department of Mathematics
[2] Pondicherry University,Department of Mathematics
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
b-Chromatic number; Cartesian product; Hypercubes; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. It is known that for any two graphs G and H, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b(G \square H) \geq {\rm {max}} \{b(G), b(H)\}}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square}$$\end{document} stands for the Cartesian product. In this paper, we determine some families of graphs G and H for which strict inequality holds. More precisely, we show that for these graphs G and H, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b(G \square H) \geq b(G) + b(H) - 1}$$\end{document} . This generalizes one of the results due to Kouider and Mahéo.
引用
收藏
页码:511 / 520
页数:9
相关论文
共 50 条
  • [31] ON THE b-CHROMATIC NUMBER OF SOME GRAPH PRODUCTS
    Jakovac, Marko
    Peterin, Iztok
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2012, 49 (02) : 156 - 169
  • [32] Some bounds for the b-chromatic number of a graph
    Kouider, M
    Mahéo, M
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 267 - 277
  • [33] ON FUZZY CHROMATIC NUMBER OF CARTESIAN PRODUCT OF SOME FUZZY GRAPHS AND ITS APPLICATION
    Rosyida, Isnaini
    Widodo
    Indrati, Ch. Rini
    Indriati, Diari
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 20 (02): : 237 - 252
  • [34] ON THE CHROMATIC NUMBER OF THE LEXICOGRAPHIC PRODUCT AND THE CARTESIAN SUM OF GRAPHS
    CIZEK, N
    KLAVZAR, S
    DISCRETE MATHEMATICS, 1994, 134 (1-3) : 17 - 24
  • [35] On b-chromatic number with other types of chromatic numbers on double star graphs
    Venkatachalam, M.
    Vivin, J. Vernold
    RICERCHE DI MATEMATICA, 2014, 63 (02) : 295 - 305
  • [36] Characterization of some b-chromatic edge critical graphs
    Ikhlef-Eschouf, Noureddine
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 47 : 21 - 35
  • [37] A COMPARATIVE STUDY ON ACHROMATIC AND B-CHROMATIC NUMBER OF CERTAIN GRAPHS
    Thilagavathy, K. P.
    Santha, A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 39 - 44
  • [38] Chromatic number of some families of graphs
    Rani, A. Vimala
    Parvathi, N.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (06): : 1141 - 1149
  • [39] The b-chromatic index of graphs
    Campos, Victor A.
    Lima, Carlos V.
    Martins, Nicolas A.
    Sampaio, Leonardo
    Santos, Marcio C.
    Silva, Ana
    DISCRETE MATHEMATICS, 2015, 338 (11) : 2072 - 2079
  • [40] New bounds for the b-chromatic number of vertex deleted graphs
    Del-Vecchio, Renata R.
    Kouider, Mekkia
    Discrete Applied Mathematics, 2022, 306 : 108 - 113