The Existence of Arbitrary Multiple Nodal Solutions for a Class of Quasilinear Schrödinger Equations

被引:0
|
作者
Wang, Kun [1 ]
Huang, Chen [1 ]
Jia, Gao [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
关键词
Quasilinear Schrodinger equations; Nodal solutions; Symmetric mountain pass theorem; SIGN-CHANGING SOLUTIONS; SOLITON-SOLUTIONS; SCHRODINGER-EQUATIONS; ELLIPTIC-EQUATIONS;
D O I
10.1007/s12346-024-01010-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned to studying the quasilinear Schr & ouml;dinger equation: -Delta u+V(x)u-(gamma)/(2)Delta(u(2))u=|u|(p-2)u, x is an element of R-N, where V(x) is a given potential, gamma>0 and either p is an element of(2,2(& lowast;)),2(& lowast;)=(2N)/(N-2) for N >= 4 or p is an element of(2,4) for N=3. We establish the existence of arbitrary multiple nodal solutions for the above equations.
引用
收藏
页数:24
相关论文
共 50 条