On a class of quasilinear Schrödinger equations with vanishing potentials and mixed nonlinearities

被引:0
|
作者
Hongxia Shi
Haibo Chen
机构
[1] Hunan First Normal University,School of Mathematics and Computational Science
[2] Central South University,School of Mathematics and Statistics
关键词
Quasilinear Schrödinger equations; mixed nonlinearity; vanishing potential; variational methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following generalized quasilinear Schrödinger equations with mixed nonlinearity {−div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u=K(x)f(u)+λξ(x)g(u)|G(u)|p−2G(u),x∈RN,u∈D1,2(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{*{20}{c}} { - div({g^2}(u)\nabla u) + g(u)g'(u){{\left| {\nabla u} \right|}^2} + V(x)u = K(x)f(u) + \lambda \xi (x)g(u){{\left| {G(u)} \right|}^{p - 2}}G(u), x \in {\mathbb{R}^N},} \\ {u \in {\mathcal{D}^{1,2}}({\mathbb{R}^N}),} \end{array}} \right.$$\end{document} where N ≥ 3, V, K are nonnegative continuous functions and f is a continuous function with a quasicritical growth. Using a change of variable as G(u)=∫0ug(t)dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(u) = \int_0^u {g(t)\rm{dt}}$$\end{document}, the above quasilinear equation is reduced to a semilinear one. Under some suitable assumptions, we prove that the above equation has at least one nontrivial solution by working in weighted Sobolev spaces and employing the variational methods.
引用
收藏
页码:923 / 936
页数:13
相关论文
共 50 条