The Existence of Arbitrary Multiple Nodal Solutions for a Class of Quasilinear Schrödinger Equations

被引:0
|
作者
Wang, Kun [1 ]
Huang, Chen [1 ]
Jia, Gao [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
关键词
Quasilinear Schrodinger equations; Nodal solutions; Symmetric mountain pass theorem; SIGN-CHANGING SOLUTIONS; SOLITON-SOLUTIONS; SCHRODINGER-EQUATIONS; ELLIPTIC-EQUATIONS;
D O I
10.1007/s12346-024-01010-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned to studying the quasilinear Schr & ouml;dinger equation: -Delta u+V(x)u-(gamma)/(2)Delta(u(2))u=|u|(p-2)u, x is an element of R-N, where V(x) is a given potential, gamma>0 and either p is an element of(2,2(& lowast;)),2(& lowast;)=(2N)/(N-2) for N >= 4 or p is an element of(2,4) for N=3. We establish the existence of arbitrary multiple nodal solutions for the above equations.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Quasilinear Schrödinger equations with linear growth: Existence and asymptotic behavior of soliton solutions
    Jing, Yongtao
    Liu, Haidong
    Zhao, Leiga
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (04)
  • [22] Existence and concentration behavior of sign-changing solutions for quasilinear Schrödinger equations
    YinBin Deng
    Wei Shuai
    Science China Mathematics, 2016, 59 : 1095 - 1112
  • [23] Bounded solutions for quasilinear modified Schrödinger equations
    Anna Maria Candela
    Addolorata Salvatore
    Caterina Sportelli
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [24] Multiple solutions for quasilinear Schrödinger equations involving local nonlinearity term
    Chunfang Chen
    Wenjie Zhu
    Proceedings - Mathematical Sciences, 2022, 132
  • [25] Multiple Solutions for a Class of Quasilinear Schrödinger Equations with Indefinite PotentialMultiple Solutions for a Class ofC. Huang and Y. Wang
    Chen Huang
    Youjun Wang
    Mediterranean Journal of Mathematics, 2025, 22 (3)
  • [26] Existence of Solutions for a Quasilinear Schr?dinger Equation with Potential Vanishing
    Yan-fang XUE
    Jian-xin HAN
    Xin-cai ZHU
    ActaMathematicaeApplicataeSinica, 2023, 39 (03) : 696 - 706
  • [27] Existence of Solutions for a Quasilinear Schrödinger Equation with Potential Vanishing
    Yan-fang Xue
    Jian-xin Han
    Xin-cai Zhu
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 696 - 706
  • [28] Multiple soliton solutions for a quasilinear Schrödinger equation
    Jiayin Liu
    Duchao Liu
    Indian Journal of Pure and Applied Mathematics, 2017, 48 : 75 - 90
  • [29] EXISTENCE OF HOMOCLINIC ORBITS OF A CLASS OF SECOND-ORDER QUASILINEAR SCHRÖDINGER EQUATIONS WITH DELAY
    Guo, Chengjun
    Chen, Baili
    Liu, Junming
    Agarwal, Ravi p.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (05) : 1489 - 1509
  • [30] Multiple solutions for a quasilinear Schrödinger–Poisson system
    Jing Zhang
    Boundary Value Problems, 2021