Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory

被引:0
|
作者
Charlotte J. Alster
Jasmine M. Robinson
Vickery L. Arcus
Louis A. Schipper
机构
[1] The University of Waikato,School of Science
来源
Biogeochemistry | 2022年 / 158卷
关键词
Climate warming; Macromolecular rate theory; Soil carbon; Soil respiration; Thermal acclimation; Thermal adaptation;
D O I
暂无
中图分类号
学科分类号
摘要
Soil heterotrophic respiration is strongly controlled by temperature. Thus, understanding how soil microbial respiration will acclimate to global warming is important for accurate predictions of soil carbon loss. Thermal acclimation of soil respiration has typically been measured using the Q10 temperature coefficient or comparing absolute rates of respiration with varying conclusions. Discrepancies in these findings may be a result of these approaches not accounting for the temperature optima associated with microbial respiration. To address this issue, we periodically measured the temperature response of respiration for soils incubated at 4, 10, 20, and 35 °C for up to 310 days. We measured respiration rates from these soils placed in a temperature block for 5 h at ~ 1 °C increments with temperatures ranging from ~ 4 to 50 °C. To assess thermal acclimation, we used macromolecular rate theory to calculate the temperature optimum (Topt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{opt}$$\end{document}), the inflection point of the curve (Tinf)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{inf})$$\end{document}, and the change in heat capacity of the transition state (ΔCP‡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P}^{\ddagger }$$\end{document}), as a measure of the temperature response. We compared changes in Topt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{opt}$$\end{document}, Tinf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{inf}$$\end{document}, and ΔCP‡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P}^{\ddagger }$$\end{document} over time between each of the long-term incubation temperatures. We found that Topt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{opt}$$\end{document} and Tinf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{inf}$$\end{document} increased and ΔCP‡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P}^{\ddagger }$$\end{document} decreased at higher long-term incubation temperatures after approximately six months. However, these results appear largely driven by changes in carbon availability, suggesting that the temperature response of soil microbial respiration changes only as soil carbon depletes. This novel approach offers a new perspective on how soil microbial communities may acclimate to climate change and may be relevant for modelling of soil carbon losses.
引用
收藏
页码:131 / 141
页数:10
相关论文
共 50 条
  • [41] Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil
    Jarvi, Mickey P.
    Burton, Andrew J.
    PLANT CELL AND ENVIRONMENT, 2018, 41 (03): : 504 - 516
  • [42] Prolonged simulated acid rain treatment in the subarctic: Effect on the soil respiration rate and microbial biomass
    Vanhala, P
    Fritze, H
    Neuvonen, S
    BIOLOGY AND FERTILITY OF SOILS, 1996, 23 (01) : 7 - 14
  • [43] Thermal acclimation of organic matter decomposition in an artificial forest soil is related to shifts in microbial community structure
    Wei, Hui
    Guenet, Bertrand
    Vicca, Sara
    Nunan, Naoise
    AbdElgawad, Hamada
    Pouteau, Valerie
    Shen, Weijun
    Janssens, Ivan A.
    SOIL BIOLOGY & BIOCHEMISTRY, 2014, 71 : 1 - 12
  • [44] Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration
    Liang, Liyin L.
    Arcus, Vickery L.
    Heskel, Mary A.
    O'Sullivan, Odhran S.
    Weerasinghe, Lasantha K.
    Creek, Danielle
    Egerton, John J. G.
    Tjoelker, Mark G.
    Atkin, Owen K.
    Schipper, Louis A.
    GLOBAL CHANGE BIOLOGY, 2018, 24 (04) : 1538 - 1547
  • [45] Thermal adaptation of microbial respiration persists throughout long-term soil carbon decomposition
    Li, Jinquan
    Pei, Junmin
    Fang, Changming
    Li, Bo
    Nie, Ming
    ECOLOGY LETTERS, 2023, 26 (10) : 1803 - 1814
  • [46] Warming increases the relative change in the turnover rate of decadally cycling soil carbon in microbial biomass carbon and soil respiration
    Liu, Dan
    Zhang, Wenling
    Xiong, Chunmei
    Nie, Qingyu
    FRONTIERS IN EARTH SCIENCE, 2023, 10
  • [47] Using Metabolic Theory to Describe Temperature and Thermal Acclimation Effects on Parasitic Infection
    Sckrabulis, Jason P.
    Altman, Karie A.
    Raffel, Thomas R.
    AMERICAN NATURALIST, 2022, 199 (06): : 789 - 803
  • [48] Determination of the Soil Microbial Biomass Carbon Using the Method of Substrate-Induced Respiration
    Ananyeva, N. D.
    Susyan, E. A.
    Gavrilenko, E. G.
    EURASIAN SOIL SCIENCE, 2011, 44 (11) : 1215 - 1221
  • [49] Determination of the soil microbial biomass carbon using the method of substrate-induced respiration
    N. D. Ananyeva
    E. A. Susyan
    E. G. Gavrilenko
    Eurasian Soil Science, 2011, 44 : 1215 - 1221
  • [50] Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method
    Creamer, R. E.
    Stone, D.
    Berry, P.
    Kuiper, I.
    APPLIED SOIL ECOLOGY, 2016, 97 : 36 - 43