Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory

被引:0
|
作者
Charlotte J. Alster
Jasmine M. Robinson
Vickery L. Arcus
Louis A. Schipper
机构
[1] The University of Waikato,School of Science
来源
Biogeochemistry | 2022年 / 158卷
关键词
Climate warming; Macromolecular rate theory; Soil carbon; Soil respiration; Thermal acclimation; Thermal adaptation;
D O I
暂无
中图分类号
学科分类号
摘要
Soil heterotrophic respiration is strongly controlled by temperature. Thus, understanding how soil microbial respiration will acclimate to global warming is important for accurate predictions of soil carbon loss. Thermal acclimation of soil respiration has typically been measured using the Q10 temperature coefficient or comparing absolute rates of respiration with varying conclusions. Discrepancies in these findings may be a result of these approaches not accounting for the temperature optima associated with microbial respiration. To address this issue, we periodically measured the temperature response of respiration for soils incubated at 4, 10, 20, and 35 °C for up to 310 days. We measured respiration rates from these soils placed in a temperature block for 5 h at ~ 1 °C increments with temperatures ranging from ~ 4 to 50 °C. To assess thermal acclimation, we used macromolecular rate theory to calculate the temperature optimum (Topt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{opt}$$\end{document}), the inflection point of the curve (Tinf)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{inf})$$\end{document}, and the change in heat capacity of the transition state (ΔCP‡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P}^{\ddagger }$$\end{document}), as a measure of the temperature response. We compared changes in Topt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{opt}$$\end{document}, Tinf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{inf}$$\end{document}, and ΔCP‡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P}^{\ddagger }$$\end{document} over time between each of the long-term incubation temperatures. We found that Topt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{opt}$$\end{document} and Tinf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{inf}$$\end{document} increased and ΔCP‡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P}^{\ddagger }$$\end{document} decreased at higher long-term incubation temperatures after approximately six months. However, these results appear largely driven by changes in carbon availability, suggesting that the temperature response of soil microbial respiration changes only as soil carbon depletes. This novel approach offers a new perspective on how soil microbial communities may acclimate to climate change and may be relevant for modelling of soil carbon losses.
引用
收藏
页码:131 / 141
页数:10
相关论文
共 50 条
  • [31] Plant-soil interactions and acclimation to temperature of microbial-mediated soil respiration may affect predictions of soil CO2 efflux
    Curiel Yuste, J.
    Ma, S.
    Baldocchi, D. D.
    BIOGEOCHEMISTRY, 2010, 98 (1-3) : 127 - 138
  • [32] Plant-soil interactions and acclimation to temperature of microbial-mediated soil respiration may affect predictions of soil CO2 efflux
    J. Curiel Yuste
    S. Ma
    D. D. Baldocchi
    Biogeochemistry, 2010, 98 : 127 - 138
  • [33] Correlations between pesticide transformation rate and microbial respiration activity in soil of different ecosystems
    Jones, WJ
    Ananyeva, ND
    BIOLOGY AND FERTILITY OF SOILS, 2001, 33 (06) : 477 - 483
  • [34] Correlations between pesticide transformation rate and microbial respiration activity in soil of different ecosystems
    William J. Jones
    Nadezhda D. Ananyeva
    Biology and Fertility of Soils, 2001, 33 : 477 - 483
  • [35] Salinity influence on soil microbial respiration rate of wetland in the Yangtze River estuary through changing microbial community
    Xi, Xue Fei
    Wang, Lei
    Hu, Jia Jun
    Tang, Yu Shu
    Hu, Yu
    Fu, Xiao Hua
    Sun, Ying
    Tsang, Yiu Fai
    Zhang, Yan Nan
    Chen, Jin Hai
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2014, 26 (12) : 2562 - 2570
  • [36] Salinity influence on soil microbial respiration rate of wetland in the Yangtze River estuary through changing microbial community
    Xue Fei Xi
    Lei Wang
    Jia Jun Hu
    Yu Shu Tang
    Yu Hu
    Xiao Hua Fu
    Ying Sun
    Yiu Fai Tsang
    Yan Nan Zhang
    Jin Hai Chen
    Journal of Environmental Sciences, 2014, 26 (12) : 2562 - 2570
  • [37] SOIL MICROBIAL RESPIRATION AT DIFFERENT WATER POTENTIALS AND TEMPERATURES - THEORY AND MATHEMATICAL-MODELING
    GRANT, RF
    ROCHETTE, P
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1994, 58 (06) : 1681 - 1690
  • [38] Non-instrumental Real-time Soil Respiration Rate and Soil Microbial Biomass Carbon Determinations
    Hsieh, Yuch Ping
    Anderson, George A.
    Miller, Robert O.
    Nemours, Djanan
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2020, 51 (19) : 2479 - 2490
  • [39] Estimation of respiration rate using an accelerometer and thermal camera in eGlasses
    Ruminski, Jacek
    Bujnowski, Adam
    Czuszynski, Krzysztof
    Kocejko, Tomasz
    PROCEEDINGS OF THE 2016 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2016, 8 : 1431 - 1434
  • [40] Evaluation of respiration rate and pattern using a portable thermal camera
    Ruminski, J.
    13TH QUANTITATIVE INFRARED THERMOGRAPHY CONFERENCE, 2016, : 678 - 683