Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory

被引:0
|
作者
Charlotte J. Alster
Jasmine M. Robinson
Vickery L. Arcus
Louis A. Schipper
机构
[1] The University of Waikato,School of Science
来源
Biogeochemistry | 2022年 / 158卷
关键词
Climate warming; Macromolecular rate theory; Soil carbon; Soil respiration; Thermal acclimation; Thermal adaptation;
D O I
暂无
中图分类号
学科分类号
摘要
Soil heterotrophic respiration is strongly controlled by temperature. Thus, understanding how soil microbial respiration will acclimate to global warming is important for accurate predictions of soil carbon loss. Thermal acclimation of soil respiration has typically been measured using the Q10 temperature coefficient or comparing absolute rates of respiration with varying conclusions. Discrepancies in these findings may be a result of these approaches not accounting for the temperature optima associated with microbial respiration. To address this issue, we periodically measured the temperature response of respiration for soils incubated at 4, 10, 20, and 35 °C for up to 310 days. We measured respiration rates from these soils placed in a temperature block for 5 h at ~ 1 °C increments with temperatures ranging from ~ 4 to 50 °C. To assess thermal acclimation, we used macromolecular rate theory to calculate the temperature optimum (Topt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{opt}$$\end{document}), the inflection point of the curve (Tinf)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{inf})$$\end{document}, and the change in heat capacity of the transition state (ΔCP‡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P}^{\ddagger }$$\end{document}), as a measure of the temperature response. We compared changes in Topt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{opt}$$\end{document}, Tinf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{inf}$$\end{document}, and ΔCP‡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P}^{\ddagger }$$\end{document} over time between each of the long-term incubation temperatures. We found that Topt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{opt}$$\end{document} and Tinf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{inf}$$\end{document} increased and ΔCP‡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P}^{\ddagger }$$\end{document} decreased at higher long-term incubation temperatures after approximately six months. However, these results appear largely driven by changes in carbon availability, suggesting that the temperature response of soil microbial respiration changes only as soil carbon depletes. This novel approach offers a new perspective on how soil microbial communities may acclimate to climate change and may be relevant for modelling of soil carbon losses.
引用
收藏
页码:131 / 141
页数:10
相关论文
共 50 条
  • [21] Assessing soil microbial respiration capacity using rDNA- or rRNA-based indices: a review
    Che, Rongxiao
    Wang, Weijin
    Zhang, Jing
    Thi Thu Nhan Nguyen
    Tao, Juan
    Wang, Fang
    Wang, Yanfen
    Xu, Zhihong
    Cui, Xiaoyong
    JOURNAL OF SOILS AND SEDIMENTS, 2016, 16 (12) : 2698 - 2708
  • [22] Compensatory Thermal Adaptation of Soil Microbial Respiration Rates in Global Croplands
    Ye, Jian-Sheng
    Bradford, Mark A.
    Maestre, Fernando T.
    Li, Feng-Min
    Garcia-Palacios, Pablo
    GLOBAL BIOGEOCHEMICAL CYCLES, 2020, 34 (06)
  • [23] METHODOLOGY FOR ASSESSING RESPIRATION AND CELLULAR INCORPORATION OF RADIOLABELED SUBSTRATES BY SOIL MICROBIAL COMMUNITIES
    DOBBINS, DC
    PFAENDER, FK
    MICROBIAL ECOLOGY, 1988, 15 (03) : 257 - 273
  • [24] Low soil moisture suppresses the thermal compensatory response of microbial respiration
    Li, Jin-Tao
    Zhang, Yan
    Chen, Hongyang
    Sun, Huiming
    Tian, Weitao
    Li, Jinquan
    Liu, Xiang
    Zhou, Shurong
    Fang, Changming
    Li, Bo
    Nie, Ming
    GLOBAL CHANGE BIOLOGY, 2023, 29 (03) : 874 - 889
  • [25] Influence of Nitrogen Fertilization Rate on Soil Respiration: A Study Using a Rapid Soil Respiration Assay
    Sanyal, Debankur
    Wolthuizen, Johnathon
    Bly, Anthony
    NITROGEN, 2021, 2 (02): : 218 - 228
  • [26] Global change factors regulate the apparent thermal acclimation of soil respiration: A meta-analysis
    Sun, Huimin
    Li, Jinquan
    Liu, Hao
    Fang, Changming
    Li, Bo
    Nie, Ming
    APPLIED SOIL ECOLOGY, 2023, 183
  • [27] Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming?
    Tucker, Colin L.
    Bell, Jennifer
    Pendall, Elise
    Ogle, Kiona
    GLOBAL CHANGE BIOLOGY, 2013, 19 (01) : 252 - 263
  • [28] Stronger compensatory thermal adaptation of soil microbial respiration with higher substrate availability
    Qu, Lingrui
    Wang, Chao
    Manzoni, Stefano
    Dacal, Marina
    Maestre, Fernando T.
    Bai, Edith
    ISME JOURNAL, 2024, 18 (01):
  • [29] Responses of soil microbial respiration to thermal stress in alpine steppe on the Tibetan plateau
    Chang, X.
    Wang, S.
    Luo, C.
    Zhang, Z.
    Duan, J.
    Zhu, X.
    Lin, Q.
    Xu, B.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2012, 63 (03) : 325 - 331
  • [30] Assessing the microbial activity of soil samples, its nutrient limitation and toxic effects of contaminants using a simple respiration test
    Hollender, J
    Althoff, K
    Mundt, M
    Dott, WG
    CHEMOSPHERE, 2003, 53 (03) : 269 - 275