Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory

被引:0
|
作者
Charlotte J. Alster
Jasmine M. Robinson
Vickery L. Arcus
Louis A. Schipper
机构
[1] The University of Waikato,School of Science
来源
Biogeochemistry | 2022年 / 158卷
关键词
Climate warming; Macromolecular rate theory; Soil carbon; Soil respiration; Thermal acclimation; Thermal adaptation;
D O I
暂无
中图分类号
学科分类号
摘要
Soil heterotrophic respiration is strongly controlled by temperature. Thus, understanding how soil microbial respiration will acclimate to global warming is important for accurate predictions of soil carbon loss. Thermal acclimation of soil respiration has typically been measured using the Q10 temperature coefficient or comparing absolute rates of respiration with varying conclusions. Discrepancies in these findings may be a result of these approaches not accounting for the temperature optima associated with microbial respiration. To address this issue, we periodically measured the temperature response of respiration for soils incubated at 4, 10, 20, and 35 °C for up to 310 days. We measured respiration rates from these soils placed in a temperature block for 5 h at ~ 1 °C increments with temperatures ranging from ~ 4 to 50 °C. To assess thermal acclimation, we used macromolecular rate theory to calculate the temperature optimum (Topt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{opt}$$\end{document}), the inflection point of the curve (Tinf)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{inf})$$\end{document}, and the change in heat capacity of the transition state (ΔCP‡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P}^{\ddagger }$$\end{document}), as a measure of the temperature response. We compared changes in Topt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{opt}$$\end{document}, Tinf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{inf}$$\end{document}, and ΔCP‡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P}^{\ddagger }$$\end{document} over time between each of the long-term incubation temperatures. We found that Topt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{opt}$$\end{document} and Tinf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{inf}$$\end{document} increased and ΔCP‡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P}^{\ddagger }$$\end{document} decreased at higher long-term incubation temperatures after approximately six months. However, these results appear largely driven by changes in carbon availability, suggesting that the temperature response of soil microbial respiration changes only as soil carbon depletes. This novel approach offers a new perspective on how soil microbial communities may acclimate to climate change and may be relevant for modelling of soil carbon losses.
引用
收藏
页码:131 / 141
页数:10
相关论文
共 50 条
  • [1] Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory
    Alster, Charlotte J.
    Robinson, Jasmine M.
    Arcus, Vickery L.
    Schipper, Louis A.
    BIOGEOCHEMISTRY, 2022, 158 (01) : 131 - 141
  • [2] Correction to: Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory
    Charlotte J. Alster
    Jasmine M. Robinson
    Vickery L. Arcus
    Louis A. Schipper
    Biogeochemistry, 2022, 158 : 143 - 145
  • [3] Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration
    Alster, Charlotte J.
    Koyama, Akihiro
    Johnson, Nels G.
    Wallenstein, Matthew D.
    von Fischer, Joseph C.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2016, 121 (06) : 1420 - 1433
  • [4] Nitrogen enrichment enhances thermal acclimation of soil microbial respiration
    Sun, Huimin
    Chen, Hongyang
    Li, Jintao
    Zhang, Yan
    Liu, Xiang
    Li, Jinquan
    Li, Bo
    Zhou, Shurong
    Nie, Ming
    BIOGEOCHEMISTRY, 2023, 162 (03) : 343 - 357
  • [5] Nitrogen enrichment enhances thermal acclimation of soil microbial respiration
    Huimin Sun
    Hongyang Chen
    Jintao Li
    Yan Zhang
    Xiang Liu
    Jinquan Li
    Bo Li
    Shurong Zhou
    Ming Nie
    Biogeochemistry, 2023, 162 : 343 - 357
  • [6] Microbial membranes related to the thermal acclimation of soil heterotrophic respiration in a temperate steppe in northern China
    Shen, Ruichang
    Xu, Ming
    Chi, Yonggang
    Yu, Shen
    Wan, Shiqiang
    He, Nianpeng
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2020, 71 (03) : 484 - 494
  • [7] Quantifying thermal adaptation of soil microbial respiration
    Alster, Charlotte J.
    van de Laar, Allycia
    Goodrich, Jordan P.
    Arcus, Vickery L.
    Deslippe, Julie R.
    Marshall, Alexis J.
    Schipper, Louis A.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [8] Quantifying thermal adaptation of soil microbial respiration
    Charlotte J. Alster
    Allycia van de Laar
    Jordan P. Goodrich
    Vickery L. Arcus
    Julie R. Deslippe
    Alexis J. Marshall
    Louis A. Schipper
    Nature Communications, 14
  • [9] Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory
    Alster, Charlotte J.
    Baas, Peter
    Wallenstein, Matthew D.
    Johnson, Nels G.
    von Fischer, Joseph C.
    FRONTIERS IN MICROBIOLOGY, 2016, 7
  • [10] Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response
    Hartley, Iain P.
    Heinemeyer, Andreas
    Ineson, Phil
    GLOBAL CHANGE BIOLOGY, 2007, 13 (08) : 1761 - 1770