The study of pomonoid amalgams was initiated by Fakhuruddin in the 1980s and subsequently extended by Bulman-Fleming, Sohail and the authors in the 2000s. We further investigate pomonoids amalgams and in particular we consider the concept of subpomonoid amalgams possessing a suitable ordered version of the unitary property. If [U;T1,T2]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[U; T_1, T_2]$$\end{document} is an amalgam of subpomonoids of the amalgam [U;S1,S2]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[U; S_1, S_2]$$\end{document} we consider the question of whether the free product of the pomonoid amalgam [U;T1,T2]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[U; T_1, T_2]$$\end{document} is poembeddable in the free product of the pomonoid amalgam [U;S1,S2]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[U; S_1, S_2]$$\end{document}, giving a sufficient condition in terms of strongly pounitary subpomonoids.