On subamalgams of partially ordered monoids

被引:0
|
作者
Bana Al Subaiei
James Renshaw
机构
[1] King Faisal University,Department of Mathematics and Statistic, College of Science
[2] University of Southampton,School of Mathematical Sciences
来源
Semigroup Forum | 2022年 / 105卷
关键词
Pomonoid; Amalgam; Pounitary; Pullback;
D O I
暂无
中图分类号
学科分类号
摘要
The study of pomonoid amalgams was initiated by Fakhuruddin in the 1980s and subsequently extended by Bulman-Fleming, Sohail and the authors in the 2000s. We further investigate pomonoids amalgams and in particular we consider the concept of subpomonoid amalgams possessing a suitable ordered version of the unitary property. If [U;T1,T2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[U; T_1, T_2]$$\end{document} is an amalgam of subpomonoids of the amalgam [U;S1,S2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[U; S_1, S_2]$$\end{document} we consider the question of whether the free product of the pomonoid amalgam [U;T1,T2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[U; T_1, T_2]$$\end{document} is poembeddable in the free product of the pomonoid amalgam [U;S1,S2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[U; S_1, S_2]$$\end{document}, giving a sufficient condition in terms of strongly pounitary subpomonoids.
引用
收藏
页码:619 / 645
页数:26
相关论文
共 50 条
  • [21] Partially Ordered Monoids Generated by Operators H , S , P , and by H , S , Pf Are Isomorphic
    B. Tasić
    Semigroup Forum, 2001, 62 : 485 - 490
  • [22] Ordered left PP monoids
    Shi, Xiaoping
    MATHEMATICA SLOVACA, 2014, 64 (06) : 1357 - 1368
  • [23] Totally ordered commutative monoids
    Evans, K
    Konikoff, M
    Madden, JJ
    Mathis, R
    Whipple, G
    SEMIGROUP FORUM, 2001, 62 (02) : 249 - 278
  • [24] Totally Ordered Commutative Monoids
    K. Evans
    M. Konikoff
    J. J. Madden
    R. Mathis
    G. Whipple
    Semigroup Forum, 2001, 62 : 249 - 278
  • [25] ON IDEALS OF LATTICE ORDERED MONOIDS
    Jasem, Milan
    MATHEMATICA BOHEMICA, 2007, 132 (04): : 369 - 387
  • [26] Partially commutative inverse monoids
    Diekert, Volker
    Lohrey, Markus
    Miller, Alexander
    SEMIGROUP FORUM, 2008, 77 (02) : 196 - 226
  • [27] Partially commutative inverse monoids
    Diekert, Volker
    Lohrey, Markus
    Miller, Alexander
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 292 - 304
  • [28] Partially commutative inverse monoids
    Volker Diekert
    Markus Lohrey
    Alexander Miller
    Semigroup Forum, 2008, 77 : 196 - 226
  • [29] Increasing positive monoids of ordered fields are FF-monoids
    Gotti, Felix
    JOURNAL OF ALGEBRA, 2019, 518 : 40 - 56
  • [30] Resource convertibility and ordered commutative monoids
    Fritz, Tobias
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2017, 27 (06) : 850 - 938