On subamalgams of partially ordered monoids

被引:0
|
作者
Bana Al Subaiei
James Renshaw
机构
[1] King Faisal University,Department of Mathematics and Statistic, College of Science
[2] University of Southampton,School of Mathematical Sciences
来源
Semigroup Forum | 2022年 / 105卷
关键词
Pomonoid; Amalgam; Pounitary; Pullback;
D O I
暂无
中图分类号
学科分类号
摘要
The study of pomonoid amalgams was initiated by Fakhuruddin in the 1980s and subsequently extended by Bulman-Fleming, Sohail and the authors in the 2000s. We further investigate pomonoids amalgams and in particular we consider the concept of subpomonoid amalgams possessing a suitable ordered version of the unitary property. If [U;T1,T2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[U; T_1, T_2]$$\end{document} is an amalgam of subpomonoids of the amalgam [U;S1,S2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[U; S_1, S_2]$$\end{document} we consider the question of whether the free product of the pomonoid amalgam [U;T1,T2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[U; T_1, T_2]$$\end{document} is poembeddable in the free product of the pomonoid amalgam [U;S1,S2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[U; S_1, S_2]$$\end{document}, giving a sufficient condition in terms of strongly pounitary subpomonoids.
引用
收藏
页码:619 / 645
页数:26
相关论文
共 50 条
  • [31] Monoids of intervals of ordered Abelian groups
    Wehrung, F
    JOURNAL OF ALGEBRA, 1996, 182 (01) : 287 - 328
  • [32] Perfect residuated lattice ordered monoids
    Rachunek, Jiri
    Salounova, Dana
    MATHEMATICA SLOVACA, 2010, 60 (06) : 823 - 838
  • [33] Representable semilattice-ordered monoids
    Hirsch, Robin
    Mikulas, Szabolcs
    ALGEBRA UNIVERSALIS, 2007, 57 (03) : 333 - 370
  • [34] Hopf Monoids of Ordered Simplicial Complexes
    Castillo, Federico
    Martin, Jeremy L.
    Samper, Jose A.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (20) : 13312 - 13351
  • [35] Subresiduated lattice ordered commutative monoids
    Cornejo, Juan Manuel
    San Martin, Hernan Javier
    Sigal, Valeria Anahi
    FUZZY SETS AND SYSTEMS, 2023, 463
  • [36] METRIC PROPERTIES OF POSITIVELY ORDERED MONOIDS
    WEHRUNG, F
    FORUM MATHEMATICUM, 1993, 5 (02) : 183 - 201
  • [37] Representable semilattice-ordered monoids
    Robin Hirsch
    Szabolcs Mikulás
    Algebra universalis, 2007, 57 : 333 - 370
  • [38] Rational subsets of partially reversible monoids
    Silva, Pedro V.
    THEORETICAL COMPUTER SCIENCE, 2008, 409 (03) : 537 - 548
  • [39] GRAPHS AND FREE PARTIALLY COMMUTATIVE MONOIDS
    KONIG, R
    THEORETICAL COMPUTER SCIENCE, 1991, 78 (02) : 319 - 346
  • [40] BILATERAL EXTENSIONS OF LINEARLY ORDERED GROUPS WITH NATURALLY ORDERED MONOIDS
    VOGEL, HJ
    MATHEMATISCHE NACHRICHTEN, 1976, 74 : 279 - 287