INJECTIVE HULLS OF PARTIALLY ORDERED MONOIDS

被引:0
|
作者
Lambek, J. [1 ]
Barr, Michael [1 ]
Kennison, John F.
Raphael, R.
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
partially ordered monoids; injectives;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find the injective hulls of partially ordered monoids in the category whose objects are po-monoids and submultiplicative order-preserving functions. These injective hulls are with respect to a special class of monics called "embeddings". We show as well that the injective objects with respect to these embeddings are precisely the quantales.
引用
收藏
页码:338 / 348
页数:11
相关论文
共 50 条
  • [1] Injective hulls for ordered algebras
    Xia Zhang
    Valdis Laan
    Algebra universalis, 2016, 76 : 339 - 349
  • [2] Injective hulls for ordered algebras
    Zhang, Xia
    Laan, Valdis
    ALGEBRA UNIVERSALIS, 2016, 76 (03) : 339 - 349
  • [3] LATTICE-ORDERED INJECTIVE HULLS
    STEINBER.SA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (03): : 550 - &
  • [4] Injective Hulls are Completions of Ordered Algebras
    Zhang, Xia
    Laan, Valdis
    Feng, Jianjun
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2024, 41 (02): : 539 - 550
  • [5] LATTICE-ORDERED INJECTIVE HULLS
    STEINBERG, SA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 169 (NJUL) : 365 - +
  • [6] Correction to: Injective hulls for ordered algebras
    Xia Zhang
    Valdis Laan
    Jianjun Feng
    Ülo Reimaa
    Algebra universalis, 2021, 82 (4)
  • [7] INJECTIVE POSITIVELY ORDERED MONOIDS .2.
    WEHRUNG, F
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 83 (01) : 83 - 100
  • [8] On subamalgams of partially ordered monoids
    Bana Al Subaiei
    James Renshaw
    Semigroup Forum, 2022, 105 : 619 - 645
  • [9] On subamalgams of partially ordered monoids
    Al Subaiei, Bana
    Renshaw, James
    SEMIGROUP FORUM, 2022, 105 (03) : 619 - 645
  • [10] Injective hulls of many-sorted ordered algebras
    Zhang, Xia
    Ma, Wen
    Rump, Wolfgang
    OPEN MATHEMATICS, 2019, 17 : 1400 - 1410