Modeling of Threshold Voltage and Subthreshold Current of Junctionless Channel-Modulated Dual-Material Double-Gate (JL-CM-DMDG) MOSFETs

被引:0
|
作者
Himanshi Awasthi
Vaibhav Purwar
Abhinav Gupta
机构
[1] Dr. A P J Abdul Kalam Technical University,Department of Electronics and Communication Engineering
[2] PSIT College of Engineering,Department of Electronics and Communication Engineering
[3] Rajkiya Engineering College,Department of Electronics Engineering
来源
Silicon | 2022年 / 14卷
关键词
Channel-Modulated (CM); Double material (DM); Double gate(DG); Junctionless FETs; Threshold voltage; DIBL; Subthreshold current;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents the analytical modeling of the subthreshold drain current of junctionless channel-modulated double-material double-gate (JL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ JL $$\end{document}-CM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ CM $$\end{document}-DMDG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ DMDG $$\end{document}) MOSFET. The first time under the full depletion mode, the center channel potential and threshold voltage (VTH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {V}_{TH} $$\end{document}) have been derived. The center channel potential has been produced by solving the 2D Passion’s equation with ideal boundary conditions. The behavior of threshold voltage (VTH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {V}_{TH} $$\end{document}) and subthreshold drain current of the JL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ JL $$\end{document}-CM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ CM $$\end{document}-DMDG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ DMDG $$\end{document} MOSFET by varying physical device parameters such as doping concentration (NDn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {N}_{Dn} $$\end{document}), channel thickness (tSi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {t}_{Si} $$\end{document}), and channel length ratio (L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{L}}_1 $$\end{document}:L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{L}}_2 $$\end{document}) has been examined. The drain-induced barrier-lowering (DIBL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ DIBL $$\end{document}) as an indicator of short-channel effects has been studied. The model results have been verified with simulation data extracted from a 2D ATLAS TCAD simulator.
引用
收藏
页码:5495 / 5502
页数:7
相关论文
共 46 条
  • [31] Analytical drift-current threshold voltage model of long-channel double-gate MOSFETs
    Shih, Chun-Hsing
    Wang, Jhong-Sheng
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2009, 24 (10)
  • [32] A Two-Dimensional (2D) Analytical Modeling and Improved Short Channel Performance of Graded-Channel Gate-Stack (GCGS) Dual-Material Double-Gate (DMDG) MOSFET
    Vadthiya, Narendar
    Tripathi, Shweta
    Naik, R. Bhavani Shankar
    SILICON, 2018, 10 (06) : 2399 - 2407
  • [33] A Two-Dimensional (2D) Analytical Modeling and Improved Short Channel Performance of Graded-Channel Gate-Stack (GCGS) Dual-Material Double-Gate (DMDG) MOSFET
    Narendar Vadthiya
    Shweta Tripathi
    R. Bhavani Shankar Naik
    Silicon, 2018, 10 : 2399 - 2407
  • [34] Surface Potential Modeling of Graded-Channel Gate-Stack (GCGS) High-K Dielectric Dual-Material Double-Gate (DMDG) MOSFET and Analog/RF Performance Study
    Vadthiya Narendar
    Kalola Ankit Girdhardas
    Silicon, 2018, 10 : 2865 - 2875
  • [35] A two-dimensional (2D) analytical subthreshold swing and transconductance model of underlap dual-material double-gate (DMDG) MOSFET for analog/RF applications
    Narendar, Vadthiya
    Rai, Saurabh
    Tiwari, Siddharth
    Mishra, R. A.
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 : 274 - 289
  • [36] Analytical models for the electric potential, threshold voltage and drain current of long-channel junctionless double-gate transistors
    Ding, Zhihao
    Hu, Guangxi
    Liu, Ran
    Wang, Lingli
    Hu, Shuyan
    Zhou, Xing
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2013, 62 (08) : 1188 - 1193
  • [37] Analytical models for the electric potential, threshold voltage and drain current of long-channel junctionless double-gate transistors
    Zhihao Ding
    Guangxi Hu
    Ran Liu
    Lingli Wang
    Shuyan Hu
    Xing Zhou
    Journal of the Korean Physical Society, 2013, 62 : 1188 - 1193
  • [38] Surface Potential Modeling of Graded-Channel Gate-Stack (GCGS) High-K Dielectric Dual-Material Double-Gate (DMDG) MOSFET and Analog/RF Performance Study
    Narendar, Vadthiya
    Girdhardas, Kalola Ankit
    SILICON, 2018, 10 (06) : 2865 - 2875
  • [39] Double jeopardy in the nanoscale court? Modeling the scaling limits of double-gate MOSFETs with physics-based compact short-channel models of threshold voltage and subthreshold swing
    Chen, Q
    Bowman, KA
    Harrell, EM
    Meindl, JD
    IEEE CIRCUITS & DEVICES, 2003, 19 (01): : 28 - 34
  • [40] Analytical Modeling of Channel Potential and Threshold Voltage of Double-Gate Junctionless FETs With a Vertical Gaussian-Like Doping Profile
    Singh, Balraj
    Gola, Deepti
    Singh, Kunal
    Goel, Ekta
    Kumar, Sanjay
    Jit, Satyabrata
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (06) : 2299 - 2305