Stronger linear programming relaxations of max-cut

被引:0
|
作者
David Avis
Jun Umemoto
机构
[1] Mcgill University and GERAD,Computer Science
[2] Kyoto University,Graduate School of Informatics
来源
Mathematical Programming | 2003年 / 97卷
关键词
Linear Programming Relaxation; Sparse Graph; Dense Graph; Random Sparse Graph; Integrality Ratio;
D O I
暂无
中图分类号
学科分类号
摘要
We consider linear programming relaxations for the max cut problem in graphs, based on k-gonal inequalities. We show that the integrality ratio for random dense graphs is asymptotically 1+1/k and for random sparse graphs is at least 1+3/k. There are O(nk)k-gonal inequalities. These results generalize work by Poljak and Tuza, who gave similar results for k=3.
引用
收藏
页码:451 / 469
页数:18
相关论文
共 50 条
  • [41] Lagrangian Smoothing Heuristics for Max-Cut
    Hernán Alperin
    Ivo Nowak
    [J]. Journal of Heuristics, 2005, 11 : 447 - 463
  • [42] Lagrangian smoothing heuristics for Max-Cut
    Alperin, H
    Nowak, I
    [J]. JOURNAL OF HEURISTICS, 2005, 11 (5-6) : 447 - 463
  • [43] LOWER BOUNDS FOR MAX-CUT IN H-FREE GRAPHS VIA SEMIDEFINITE PROGRAMMING
    Carlson, Charles
    Kolla, Alexandra
    Li, Ray
    Mani, Nitya
    Sudakov, Benny
    Trevisan, Luca
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 1557 - 1568
  • [44] Distributed Selfish Algorithms for the Max-Cut Game
    Auger, D.
    Cohen, J.
    Coucheney, P.
    Rodier, L.
    [J]. INFORMATION SCIENCES AND SYSTEMS 2013, 2013, 264 : 45 - 54
  • [45] A hierarchical social metaheuristic for the Max-Cut problem
    Duarte, A
    Fernández, F
    Sánchez, A
    Sanz, A
    [J]. EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2004, 3004 : 84 - 94
  • [46] Cutting plane algorithm for the max-cut problem
    de Simone, C.
    Rinaldi, G.
    [J]. Optimization Methods and Software, 1994, 3 (1-3) : 195 - 214
  • [47] Combinatorial persistency criteria for multicut and max-cut
    Lange, Jan-Hendrik
    Andres, Bjoern
    Swoboda, Paul
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 6086 - 6095
  • [48] An efficient Lagrangian smoothing heuristic for Max-Cut
    Yong Xia
    Zi Xu
    [J]. Indian Journal of Pure and Applied Mathematics, 2010, 41 : 683 - 700
  • [49] Partial Lasserre relaxation for sparse Max-Cut
    Campos, Juan S.
    Misener, Ruth
    Parpas, Panos
    [J]. OPTIMIZATION AND ENGINEERING, 2023, 24 (03) : 1983 - 2004
  • [50] Local Max-Cut in Smoothed Polynomial Time
    Angel, Omer
    Bubeck, Sebastien
    Peres, Yuval
    Wei, Fan
    [J]. STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 429 - 437