Combinatorial persistency criteria for multicut and max-cut

被引:5
|
作者
Lange, Jan-Hendrik [1 ,2 ]
Andres, Bjoern [1 ,3 ,4 ]
Swoboda, Paul [1 ]
机构
[1] Max Planck Inst Informat, Saarbrucken, Germany
[2] Saarland Univ, Saarbrucken, Germany
[3] Bosch Ctr AI, Renningen, Germany
[4] Univ Tubingen, Tubingen, Germany
关键词
ROOF DUALITY;
D O I
10.1109/CVPR.2019.00625
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In combinatorial optimization, partial variable assignments are called persistent if they agree with some optimal solution. We propose persistency criteria for the multicut and max-cut problem as well as fast combinatorial routines to verify them. The criteria that we derive are based on mappings that improve feasible multicuts, respectively cuts. Our elementary criteria can be checked enumeratively. The more advanced ones rely on fast algorithms for upper and lower bounds for the respective cut problems and max flow techniques for auxiliary min-cut problems. Our methods can be used as a preprocessing technique for reducing problem sizes or for computing partial optimality guarantees for solutions output by heuristic solvers. We show the efficacy of our methods on instances of both problems from computer vision, biomedical image analysis and statistical physics.
引用
收藏
页码:6086 / 6095
页数:10
相关论文
共 50 条
  • [1] COMBINATORIAL PROPERTIES AND THE COMPLEXITY OF A MAX-CUT APPROXIMATION
    DELORME, C
    POLJAK, S
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (04) : 313 - 333
  • [2] Combinatorial and geometric properties of the Max-Cut and Min-Cut problems
    Bondarenko, V. A.
    Nikolaev, A. V.
    [J]. DOKLADY MATHEMATICS, 2013, 88 (02) : 516 - 517
  • [3] Combinatorial and geometric properties of the Max-Cut and Min-Cut problems
    V. A. Bondarenko
    A. V. Nikolaev
    [J]. Doklady Mathematics, 2013, 88 : 516 - 517
  • [4] Partitioning planar graphs: a fast combinatorial approach for max-cut
    Liers, F.
    Pardella, G.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 51 (01) : 323 - 344
  • [5] Partitioning planar graphs: a fast combinatorial approach for max-cut
    F. Liers
    G. Pardella
    [J]. Computational Optimization and Applications, 2012, 51 : 323 - 344
  • [6] Approximation algorithms for the Bi-criteria weighted MAX-CUT problem
    Angel, E
    Bampis, E
    Gourvès, L
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2005, 3787 : 331 - 340
  • [7] Approximation algorithms for the bi-criteria weighted MAX-CUT problem
    Angel, Eric
    Bampis, Evripidis
    Gourves, Laurent
    [J]. DISCRETE APPLIED MATHEMATICS, 2006, 154 (12) : 1685 - 1692
  • [8] Graphs with a small max-cut
    Delorme, C
    Favaron, O
    [J]. UTILITAS MATHEMATICA, 1999, 56 : 153 - 165
  • [9] Semidefinite relaxations for max-cut
    Laurent, M
    [J]. THE SHARPEST CUT: THE IMPACT OF MANFRED PADBERG AND HIS WORK, 2004, 4 : 257 - 290
  • [10] MAX-CUT IN CIRCULANT GRAPHS
    POLJAK, S
    TURZIK, D
    [J]. DISCRETE MATHEMATICS, 1992, 108 (1-3) : 379 - 392