A hierarchy of topological systems with completely positive entropy

被引:0
|
作者
Sebastián Barbieri
Felipe García-Ramos
机构
[1] Universidad de Santiago de Chile,Departamento de Matemática y Ciencia de la Computación
[2] Universidad Autónoma de San Luis Potosí,CONACyT and Instituto de Física
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We define a hierarchy of systems with topological completely positive entropy in the context of countable amenable continuous group actions on compact metric spaces. For each countable ordinal we construct a dynamical system on the corresponding level of the aforementioned hierarchy and provide subshifts of finite type for the first three levels. We give necessary and sufficient conditions for entropy pairs by means of the asymptotic relation on systems with the pseudo-orbit tracing property, and thus create a bridge between a result by Pavlov and a result by Meyerovitch. As a corollary, we answer negatively an open question by Pavlov regarding necessary conditions for completely positive entropy.
引用
收藏
页码:639 / 680
页数:41
相关论文
共 50 条
  • [1] A hierarchy of topological systems with completely positive entropy
    Barbieri, Sebastian
    Garcia-Ramos, Felipe
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2021, 143 (02): : 639 - 680
  • [2] DYNAMIC SYSTEMS WITH COMPLETELY POSITIVE AND ZERO ENTROPY
    PINSKER, MS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1960, 133 (05): : 1025 - 1026
  • [3] Topological entropy for the canonical completely positive maps on graph C*-algebras
    Jeong, JA
    Park, GH
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (01) : 101 - 116
  • [4] Non-Bernoulli systems with completely positive entropy
    Dooley, A. H.
    Golodets, V. Ya.
    Rudolph, D. J.
    Sinel'shchikov, S. D.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 87 - 124
  • [5] Integrable Hamiltonian systems with positive topological entropy
    Liu, Fei
    Chen, Cheng
    Zhang, Xiang
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (08): : 837 - 847
  • [6] Topologically completely positive entropy and zero-dimensional topologically completely positive entropy
    Pavlov, Ronnie
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 1894 - 1922
  • [7] HAMILTONIAN SYSTEMS WITH POSITIVE TOPOLOGICAL ENTROPY AND CONJUGATE POINTS
    Liu, Fei
    Wang, Zhiyu
    Wang, Fang
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (03): : 527 - 533
  • [8] A Dynamical Systems-Based Hierarchy for Shannon, Metric and Topological Entropy
    Addabbo, Raymond
    Blackmore, Denis
    [J]. ENTROPY, 2019, 21 (10)
  • [9] Positive topological entropy of positive contactomorphisms
    Dahinden, Lucas
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2020, 18 (03) : 691 - 732
  • [10] COMPLETELY POSITIVE MAPS AND ENTROPY INEQUALITIES
    LINDBLAD, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 40 (02) : 147 - 151