A hierarchy of topological systems with completely positive entropy

被引:0
|
作者
Sebastián Barbieri
Felipe García-Ramos
机构
[1] Universidad de Santiago de Chile,Departamento de Matemática y Ciencia de la Computación
[2] Universidad Autónoma de San Luis Potosí,CONACyT and Instituto de Física
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We define a hierarchy of systems with topological completely positive entropy in the context of countable amenable continuous group actions on compact metric spaces. For each countable ordinal we construct a dynamical system on the corresponding level of the aforementioned hierarchy and provide subshifts of finite type for the first three levels. We give necessary and sufficient conditions for entropy pairs by means of the asymptotic relation on systems with the pseudo-orbit tracing property, and thus create a bridge between a result by Pavlov and a result by Meyerovitch. As a corollary, we answer negatively an open question by Pavlov regarding necessary conditions for completely positive entropy.
引用
收藏
页码:639 / 680
页数:41
相关论文
共 50 条
  • [41] A characterization of topologically completely positive entropy for shifts of finite type
    Pavlov, Ronnie
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 2054 - 2065
  • [42] Bi-free entropy with respect to completely positive maps
    Katsimpas, Georgios
    Skoufranis, Paul
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2023,
  • [43] Bernoulli actions of sofic groups have completely positive entropy
    David Kerr
    [J]. Israel Journal of Mathematics, 2014, 202 : 461 - 474
  • [44] SUBSHIFTS OF FINITE TYPE WHICH HAVE COMPLETELY POSITIVE ENTROPY
    Hoffman, Christopher
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (04) : 1497 - 1516
  • [45] SPECTRUM OF ABELIAN-GROUPS OF TRANSFORMATION WITH COMPLETELY POSITIVE ENTROPY
    KAMINSKI, B
    SASIADA, E
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1976, 24 (09): : 683 - 689
  • [46] The spectrum of completely positive entropy actions of countable amenable groups
    Dooley, AH
    Golodets, VY
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (01) : 1 - 18
  • [47] Topological entropy of switched nonlinear systems
    Yang, Guosong
    Liberzon, Daniel
    Hespanha, Joao P.
    [J]. HSCC2021: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (PART OF CPS-IOT WEEK), 2021,
  • [48] Topological entropy of nonautonomous dynamical systems
    Liu, Kairan
    Qiao, Yixiao
    Xu, Leiye
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) : 5353 - 5365
  • [49] On properties of the topological entropy of dynamical systems
    Vetokhin, A. N.
    [J]. MATHEMATICAL NOTES, 2013, 93 (3-4) : 373 - 381
  • [50] On Topological Entropy of Interconnected Nonlinear Systems
    Liberzon, Daniel
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (06): : 2210 - 2214