HAMILTONIAN SYSTEMS WITH POSITIVE TOPOLOGICAL ENTROPY AND CONJUGATE POINTS

被引:0
|
作者
Liu, Fei [1 ]
Wang, Zhiyu [1 ]
Wang, Fang [2 ,3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] BCMIIS, Beijing 100048, Peoples R China
来源
关键词
Hamiltonian systems; topological entropy; fundamental group; conjugate points;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the geodesic flows induced by the natural Hamiltonian systems H (x, p) = 1/2g(ij) (x)p(i)p(j) + V (x) defined on a smooth Riemannian manifold (M = S-1 x N, g), where S-1 is the one dimensional torus, N is a compact manifold, g is the Riemannian metric on M and V is a potential function satisfying V <= 0. We prove that under suitable conditions, if the fundamental group pi(1)(N) has sub-exponential growth rate, then the Riemannian manifold M with the Jacobi metric (h - V)g, i.e., (M, (h - V)g), is a manifold with conjugate points for all h with 0 < h < delta, where (5 is a small number.
引用
收藏
页码:527 / 533
页数:7
相关论文
共 50 条
  • [1] Integrable Hamiltonian systems with positive topological entropy
    Liu, Fei
    Chen, Cheng
    Zhang, Xiang
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (08): : 837 - 847
  • [2] On the creation of conjugate points for Hamiltonian systems
    Contreras, G
    Iturriaga, R
    Sanchez-Morgado, H
    [J]. NONLINEARITY, 1998, 11 (02) : 355 - 361
  • [3] Weighted Topological Entropy of the Set of Generic Points in Topological Dynamical Systems
    Cao Zhao
    Ercai Chen
    Xiaoyao Zhou
    Zheng Yin
    [J]. Journal of Dynamics and Differential Equations, 2018, 30 : 937 - 955
  • [4] Weighted Topological Entropy of the Set of Generic Points in Topological Dynamical Systems
    Zhao, Cao
    Chen, Ercai
    Zhou, Xiaoyao
    Yin, Zheng
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (03) : 937 - 955
  • [5] A hierarchy of topological systems with completely positive entropy
    Barbieri, Sebastian
    Garcia-Ramos, Felipe
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2021, 143 (02): : 639 - 680
  • [6] A hierarchy of topological systems with completely positive entropy
    Sebastián Barbieri
    Felipe García-Ramos
    [J]. Journal d'Analyse Mathématique, 2021, 143 : 639 - 680
  • [7] Topological entropy for divergence points
    Ercai, C
    Küpper, T
    Lin, S
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1173 - 1208
  • [8] PERIODIC POINTS AND TOPOLOGICAL ENTROPY
    CONZE, JP
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 267 (03): : 149 - &
  • [9] Positive-entropy Hamiltonian systems on Nilmanifolds via scattering
    Butler, Leo T.
    [J]. NONLINEARITY, 2014, 27 (10) : 2479 - 2488
  • [10] On the topological entropy of an optical Hamiltonian flow
    Niche, CJ
    [J]. NONLINEARITY, 2001, 14 (04) : 817 - 827