A Dynamical Systems-Based Hierarchy for Shannon, Metric and Topological Entropy

被引:3
|
作者
Addabbo, Raymond [1 ]
Blackmore, Denis [2 ,3 ]
机构
[1] Vaughn Coll Aeronaut & Technol, Dept Arts & Sci, Flushing, NY 11369 USA
[2] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[3] New Jersey Inst Technol, Ctr Appl & Computat Math, Newark, NJ 07102 USA
关键词
topological entropy; Shannon entropy: metric entropy; Bernoulli scheme;
D O I
10.3390/e21100938
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A rigorous dynamical systems-based hierarchy is established for the definitions of entropy of Shannon (information), Kolmogorov-Sinai (metric) and Adler, Konheim & McAndrew (topological). In particular, metric entropy, with the imposition of some additional properties, is proven to be a special case of topological entropy and Shannon entropy is shown to be a particular form of metric entropy. This is the first of two papers aimed at establishing a dynamically grounded hierarchy comprising Clausius, Boltzmann, Gibbs, Shannon, metric and topological entropy in which each element is ideally a special case of its successor or some kind of limit thereof.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Metric and Topological Entropy Bounds for Optimal Coding of Stochastic Dynamical Systems
    Kawan, Christoph
    Yuksel, Serdar
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (06) : 2466 - 2479
  • [2] Shannon entropy for stationary processes and dynamical systems
    Hamdan, D.
    Parry, W.
    Thouvenot, J. -P.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 447 - 480
  • [3] Dynamical Shannon entropy and information Tsallis entropy in complex systems
    Yulmetyev, RM
    Emelyanova, NA
    Gafarov, FM
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 649 - 676
  • [4] The Shannon entropy as a measure of diffusion in multidimensional dynamical systems
    C. M. Giordano
    P. M. Cincotta
    [J]. Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [5] Kinetics of the dynamical information Shannon entropy for complex systems
    Yulmetyev, RM
    Yulmetyeva, DG
    [J]. ACTA PHYSICA POLONICA B, 1999, 30 (08): : 2511 - 2531
  • [6] The Shannon entropy as a measure of diffusion in multidimensional dynamical systems
    Giordano, C. M.
    Cincotta, P. M.
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (05):
  • [7] Some Properties of the Topological Entropy of a Family of Dynamical Systems Defined on an Arbitrary Metric Space
    A. N. Vetokhin
    [J]. Differential Equations, 2021, 57 : 975 - 983
  • [8] Some Properties of the Topological Entropy of a Family of Dynamical Systems Defined on an Arbitrary Metric Space
    Vetokhin, A. N.
    [J]. DIFFERENTIAL EQUATIONS, 2021, 57 (08) : 975 - 983
  • [9] Topological entropy of nonautonomous dynamical systems
    Liu, Kairan
    Qiao, Yixiao
    Xu, Leiye
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) : 5353 - 5365
  • [10] On properties of the topological entropy of dynamical systems
    Vetokhin, A. N.
    [J]. MATHEMATICAL NOTES, 2013, 93 (3-4) : 373 - 381