The Shannon entropy as a measure of diffusion in multidimensional dynamical systems

被引:0
|
作者
C. M. Giordano
P. M. Cincotta
机构
[1] Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata (CONICET-UNLP),Grupo de Caos en Sistemas Hamiltonianos, Facultad de Ciencias Astonómicas y Geofísicas
关键词
Chaotic diffusion; Multidimensional dynamical systems; Entropy; Rate of diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work, we introduce two new estimators of chaotic diffusion based on the Shannon entropy. Using theoretical, heuristic and numerical arguments, we show that the entropy, S, provides a measure of the diffusion extent of a given small initial ensemble of orbits, while an indicator related with the time derivative of the entropy, S′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S'$$\end{document}, estimates the diffusion rate. We show that in the limiting case of near ergodicity, after an appropriate normalization, S′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S'$$\end{document} coincides with the standard homogeneous diffusion coefficient. The very first application of this formulation to a 4D symplectic map and to the Arnold Hamiltonian reveals very successful and encouraging results.
引用
收藏
相关论文
共 50 条
  • [1] The Shannon entropy as a measure of diffusion in multidimensional dynamical systems
    Giordano, C. M.
    Cincotta, P. M.
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (05):
  • [2] Shannon entropy for stationary processes and dynamical systems
    Hamdan, D.
    Parry, W.
    Thouvenot, J. -P.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 447 - 480
  • [3] Dynamical Shannon entropy and information Tsallis entropy in complex systems
    Yulmetyev, RM
    Emelyanova, NA
    Gafarov, FM
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 649 - 676
  • [4] Kinetics of the dynamical information Shannon entropy for complex systems
    Yulmetyev, RM
    Yulmetyeva, DG
    [J]. ACTA PHYSICA POLONICA B, 1999, 30 (08): : 2511 - 2531
  • [5] ON THE SHANNON MEASURE OF ENTROPY
    ARORA, PN
    [J]. INFORMATION SCIENCES, 1981, 23 (01) : 1 - 9
  • [6] Shannon entropy as a new measure of aromaticity, Shannon aromaticity
    Noorizadeh, Siamak
    Shakerzadeh, Ehsan
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (18) : 4742 - 4749
  • [7] SPECTRUM OF MULTIDIMENSIONAL DYNAMICAL-SYSTEMS WITH POSITIVE ENTROPY
    KAMINSKI, B
    LIARDET, P
    [J]. STUDIA MATHEMATICA, 1994, 108 (01) : 77 - 85
  • [8] A Dynamical Systems-Based Hierarchy for Shannon, Metric and Topological Entropy
    Addabbo, Raymond
    Blackmore, Denis
    [J]. ENTROPY, 2019, 21 (10)
  • [9] Shannon-information entropy sum as a correlation measure in atomic systems
    Guevara, NL
    Sagar, RP
    Esquivel, RO
    [J]. PHYSICAL REVIEW A, 2003, 67 (01) : 1 - 012507