Shannon entropy for stationary processes and dynamical systems

被引:0
|
作者
Hamdan, D. [1 ]
Parry, W.
Thouvenot, J. -P.
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatoires, UMR 7599, F-75252 Paris 05, France
关键词
D O I
10.1017/S0143385707001034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider stationary ergodic processes indexed by Z or Z(n) whose finite-dimensional marginals have laws which are absolutely continuous with respect to Lebesgue measure. We define an entropy theory for these continuous processes, prove an analogue of the Shannon - MacMillan - Breiman theorem and study more precisely the particular example of Gaussian processes.
引用
收藏
页码:447 / 480
页数:34
相关论文
共 50 条
  • [1] Dynamical Shannon entropy and information Tsallis entropy in complex systems
    Yulmetyev, RM
    Emelyanova, NA
    Gafarov, FM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 (1-4) : 649 - 676
  • [2] Kinetics of the dynamical information Shannon entropy for complex systems
    Yulmetyev, RM
    Yulmetyeva, DG
    ACTA PHYSICA POLONICA B, 1999, 30 (08): : 2511 - 2531
  • [3] The Shannon entropy as a measure of diffusion in multidimensional dynamical systems
    Giordano, C. M.
    Cincotta, P. M.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (05):
  • [4] The Shannon entropy as a measure of diffusion in multidimensional dynamical systems
    C. M. Giordano
    P. M. Cincotta
    Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [5] Shannon Entropy as an Indicator for Sorting Processes in Hydrothermal Systems
    van Ruitenbeek, Frank J. A.
    Goseling, Jasper
    Bakker, Wim H.
    Hein, Kim A. A.
    ENTROPY, 2020, 22 (06)
  • [6] A Dynamical Systems-Based Hierarchy for Shannon, Metric and Topological Entropy
    Addabbo, Raymond
    Blackmore, Denis
    ENTROPY, 2019, 21 (10)
  • [7] On entropy rates of dynamical systems and Gaussian processes
    School of Mathematics, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
    不详
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 227 (5-6): : 301 - 308
  • [8] On entropy rates of dynamical systems and Gaussian processes
    Palus, M
    PHYSICS LETTERS A, 1997, 227 (5-6) : 301 - 308
  • [9] The Shannon entropy: An efficient indicator of dynamical stability
    Cincotta, Pablo M.
    Giordano, Claudia M.
    Silva, Raphael Alves
    Beauge, Cristian
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 417
  • [10] Empirical risk minimization for dynamical systems and stationary processes
    McGoff, Kevin
    Nobel, Andrew B.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2021, 10 (03) : 1073 - 1104