A matrix model for hypergeometric Hurwitz numbers

被引:0
|
作者
J. Ambjørn
L. O. Chekhov
机构
[1] Copenhagen University,Niels Bohr Institute
[2] Radboud University,IMAPP
[3] RAS,Steklov Mathematical Institute
[4] Independent University of Moscow,Laboratoire Poncelet
[5] Århus University,Center for Quantum Geometry of Moduli Spaces
来源
关键词
Hurwitz number; random complex matrix; Kadomtsev-Petviashvili hierarchy; matrix chain; bipartite graph; spectral curve;
D O I
暂无
中图分类号
学科分类号
摘要
We present multimatrix models that are generating functions for the numbers of branched covers of the complex projective line ramified over n fixed points zi, i = 1, ..., n (generalized Grothendieck’s dessins d’enfants) of fixed genus, degree, and ramification profiles at two points z1 and zn. We sum over all possible ramifications at the other n-2 points with a fixed length of the profile at z2 and with a fixed total length of profiles at the remaining n-3 points. All these models belong to a class of hypergeometric Hurwitz models and are therefore tau functions of the Kadomtsev-Petviashvili hierarchy. In this case, we can represent the obtained model as a chain of matrices with a (nonstandard) nearest-neighbor interaction of the type tr MiMi+1−1. We describe the technique for evaluating spectral curves of such models, which opens the way for obtaining 1/N2-expansions of these models using the topological recursion method. These spectral curves turn out to be algebraic.
引用
收藏
页码:1486 / 1498
页数:12
相关论文
共 50 条
  • [21] Around spin Hurwitz numbers
    A. D. Mironov
    A. Morozov
    S. M. Natanzon
    A. Yu. Orlov
    Letters in Mathematical Physics, 2021, 111
  • [22] Tropical real Hurwitz numbers
    Hannah Markwig
    Johannes Rau
    Mathematische Zeitschrift, 2015, 281 : 501 - 522
  • [23] Tropical real Hurwitz numbers
    Markwig, Hannah
    Rau, Johannes
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 501 - 522
  • [24] Pruned double Hurwitz numbers
    Hahn, Marvin Anas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [25] Tropical Open Hurwitz Numbers
    Bertrand, Benoit
    Brugalle, Erwan
    Mikhalkin, Grigory
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2011, 125 : 157 - 171
  • [26] Generating weighted Hurwitz numbers
    Bertola, M.
    Harnad, J.
    Runov, B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [27] Multispecies Weighted Hurwitz Numbers
    Harnad, J.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [28] Monotone Orbifold Hurwitz Numbers
    Do N.
    Karev M.
    Journal of Mathematical Sciences, 2017, 226 (5) : 568 - 587
  • [29] A square root of Hurwitz numbers
    Lee, Junho
    MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 99 - 113
  • [30] Around spin Hurwitz numbers
    Mironov, A. D.
    Morozov, A.
    Natanzon, S. M.
    Orlov, A. Yu
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (05)