Monotone Orbifold Hurwitz Numbers

被引:0
|
作者
Do N. [1 ]
Karev M. [2 ]
机构
[1] School of Mathematical Sciences Monash University, Melbourne
[2] St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg
基金
澳大利亚研究理事会; 俄罗斯基础研究基金会;
关键词
D O I
10.1007/s10958-017-3551-9
中图分类号
学科分类号
摘要
In general, the Hurwitz numbers count the branched covers of the Riemann sphere with prescribed ramification data or, equivalently, the factorizations of a permutation with prescribed cycle structure data. In the present paper, the study of monotone orbifold Hurwitz numbers is initiated. These numbers are both variations of the orbifold case and generalizations of the monotone case. These two cases have previously been studied in the literature. We derive a cut-and-join recursion for monotone orbifold Hurwitz numbers, determine a quantum curve governing their wave function, and state an explicit conjecture relating them to topological recursion. Bibliography: 27 titles. © 2017, Springer Science+Business Media, LLC.
引用
收藏
页码:568 / 587
页数:19
相关论文
共 50 条
  • [1] Topological recursion for monotone orbifold Hurwitz numbers: a proof of the Do-Karev conjecture
    Kramer, Reinier
    Popolitov, Alexandr
    Shadrin, Sergey
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2022, 23 (02) : 809 - 827
  • [2] MIRROR CURVE OF ORBIFOLD HURWITZ NUMBERS
    Dumitrescu, Olivia
    Mulase, Motohico
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 66 (02): : 307 - 328
  • [3] MIRROR SYMMETRY FOR ORBIFOLD HURWITZ NUMBERS
    Bouchard, Vincent
    Hernandez Serrano, Daniel
    Liu, Xiaojun
    Mulase, Motohico
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2014, 98 (03) : 375 - 423
  • [4] QUASI-POLYNOMIALITY OF MONOTONE ORBIFOLD HURWITZ NUMBERS AND GROTHENDIECK'S DESSINS D'ENFANTS
    Kramer, Reinier
    Lewanski, Danilo
    Shadrin, Sergey
    DOCUMENTA MATHEMATICA, 2019, 24 : 857 - 898
  • [5] Monotone Hurwitz Numbers in Genus Zero
    Goulden, I. P.
    Guay-Paquet, Mathieu
    Novak, Jonathan
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (05): : 1020 - 1042
  • [6] Orbifold Hurwitz numbers and Eynard-Orantin invariants
    Do, Norman
    Leigh, Oliver
    Norbury, Paul
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (05) : 1281 - 1327
  • [7] Polynomiality of monotone Hurwitz numbers in higher genera
    Goulden, I. P.
    Guay-Paquet, Mathieu
    Novak, Jonathan
    ADVANCES IN MATHEMATICS, 2013, 238 : 1 - 23
  • [8] Asymptotics for real monotone double Hurwitz numbers
    Ding, Yanqiao
    He, Qinhao
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 204
  • [9] Topological recursion and a quantum curve for monotone Hurwitz numbers
    Do, Norman
    Dyer, Alastair
    Mathews, Daniel V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 120 : 19 - 36
  • [10] Cut-and-join equation for monotone Hurwitz numbers revisited
    Dunin-Barkowski, P.
    Kramer, R.
    Popolitov, A.
    Shadrin, S.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 1 - 6