Monotone Hurwitz Numbers in Genus Zero

被引:22
|
作者
Goulden, I. P. [1 ]
Guay-Paquet, Mathieu [1 ]
Novak, Jonathan [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] MIT, Dept Math, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Hurwitz numbers; matrix models; enumerative geometry; MATRIX MODELS; FACTORIZATIONS; ENUMERATION; INTEGRALS; CURVES;
D O I
10.4153/CJM-2012-038-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hurwitz numbers count branched covers of the Riemann sphere with specified ramification data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone Hurwitz numbers count a restricted subset of these branched covers related to the expansion of complete symmetric functions in the Jucys-Murphy elements, and have arisen in recent work on the the asymptotic expansion of the Harish-Chandra-Itzykson-Zuber integral. In this paper we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent of those for classical Hurwitz numbers. The first is the monotone join-cut equation, a partial differential equation with initial conditions that characterizes the generating function for monotone Hurwitz numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for monotone Hurwitz numbers in genus zero.
引用
收藏
页码:1020 / 1042
页数:23
相关论文
共 50 条
  • [1] Monotone Orbifold Hurwitz Numbers
    Do N.
    Karev M.
    Journal of Mathematical Sciences, 2017, 226 (5) : 568 - 587
  • [2] Polynomiality of monotone Hurwitz numbers in higher genera
    Goulden, I. P.
    Guay-Paquet, Mathieu
    Novak, Jonathan
    ADVANCES IN MATHEMATICS, 2013, 238 : 1 - 23
  • [3] Asymptotics for real monotone double Hurwitz numbers
    Ding, Yanqiao
    He, Qinhao
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 204
  • [4] Topological recursion and a quantum curve for monotone Hurwitz numbers
    Do, Norman
    Dyer, Alastair
    Mathews, Daniel V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 120 : 19 - 36
  • [5] Cut-and-join equation for monotone Hurwitz numbers revisited
    Dunin-Barkowski, P.
    Kramer, R.
    Popolitov, A.
    Shadrin, S.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 1 - 6
  • [6] Double Hurwitz Numbers and Multisingularity Loci in Genus 0
    Kazarian, Maxim
    Lando, Sergey
    Zvonkine, Dimitri
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (12) : 9529 - 9570
  • [7] Chamber behavior of double Hurwitz numbers in genus 0
    Shadrin, S.
    Shapiro, M.
    Vainshtein, A.
    ADVANCES IN MATHEMATICS, 2008, 217 (01) : 79 - 96
  • [8] Relating ordinary and fully simple maps via monotone Hurwitz numbers
    Borot, Gaetan
    Charbonnier, Severin
    Do, Norman
    Garcia-Failde, Elba
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [9] Shifted genus expanded W∞ algebra and shifted Hurwitz numbers
    Zheng, Quan
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (05)
  • [10] RANDOM PARTITIONS UNDER THE PLANCHEREL-HURWITZ MEASURE, HIGH-GENUS HURWITZ NUMBERS AND MAPS
    Chapuy, Guillaume
    Louf, Baptiste
    Walsh, Harriet
    ANNALS OF PROBABILITY, 2024, 52 (04): : 1225 - 1252