Monotone Hurwitz Numbers in Genus Zero

被引:22
|
作者
Goulden, I. P. [1 ]
Guay-Paquet, Mathieu [1 ]
Novak, Jonathan [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] MIT, Dept Math, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Hurwitz numbers; matrix models; enumerative geometry; MATRIX MODELS; FACTORIZATIONS; ENUMERATION; INTEGRALS; CURVES;
D O I
10.4153/CJM-2012-038-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hurwitz numbers count branched covers of the Riemann sphere with specified ramification data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone Hurwitz numbers count a restricted subset of these branched covers related to the expansion of complete symmetric functions in the Jucys-Murphy elements, and have arisen in recent work on the the asymptotic expansion of the Harish-Chandra-Itzykson-Zuber integral. In this paper we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent of those for classical Hurwitz numbers. The first is the monotone join-cut equation, a partial differential equation with initial conditions that characterizes the generating function for monotone Hurwitz numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for monotone Hurwitz numbers in genus zero.
引用
收藏
页码:1020 / 1042
页数:23
相关论文
共 50 条
  • [41] A square root of Hurwitz numbers
    Junho Lee
    manuscripta mathematica, 2020, 162 : 99 - 113
  • [42] On Hurwitz numbers and Hedge integrals
    Ekedahl, T
    Lando, S
    Shapiro, M
    Vainshtein, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1175 - 1180
  • [43] Simple Hurwitz numbers of a disk
    Natanzon, S. M.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (01) : 36 - 47
  • [44] BKP and projective Hurwitz numbers
    Natanzon, Sergey M.
    Orlov, Aleksandr Yu.
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (06) : 1065 - 1109
  • [45] A Monodromy Graph Approach to the Piecewise Polynomiality of Simple, Monotone and Grothendieck Dessins d'enfants Double Hurwitz Numbers
    Hahn, Marvin Anas
    GRAPHS AND COMBINATORICS, 2019, 35 (03) : 729 - 766
  • [47] Black holes and Hurwitz class numbers
    Kachru, Shamit
    Tripathy, Arnav
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (12):
  • [48] Wall crossings for double Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    ADVANCES IN MATHEMATICS, 2011, 228 (04) : 1894 - 1937
  • [49] HURWITZ NUMBERS AND PRODUCTS OF RANDOM MATRICES
    Orlov, A. Yu.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (03) : 1282 - 1323
  • [50] Laplacian growth in a channel and Hurwitz numbers
    Zabrodin, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (18)