Monotone Orbifold Hurwitz Numbers

被引:0
|
作者
Do N. [1 ]
Karev M. [2 ]
机构
[1] School of Mathematical Sciences Monash University, Melbourne
[2] St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg
基金
澳大利亚研究理事会; 俄罗斯基础研究基金会;
关键词
D O I
10.1007/s10958-017-3551-9
中图分类号
学科分类号
摘要
In general, the Hurwitz numbers count the branched covers of the Riemann sphere with prescribed ramification data or, equivalently, the factorizations of a permutation with prescribed cycle structure data. In the present paper, the study of monotone orbifold Hurwitz numbers is initiated. These numbers are both variations of the orbifold case and generalizations of the monotone case. These two cases have previously been studied in the literature. We derive a cut-and-join recursion for monotone orbifold Hurwitz numbers, determine a quantum curve governing their wave function, and state an explicit conjecture relating them to topological recursion. Bibliography: 27 titles. © 2017, Springer Science+Business Media, LLC.
引用
收藏
页码:568 / 587
页数:19
相关论文
共 50 条
  • [21] Lozenge Tilings and Hurwitz Numbers
    Jonathan Novak
    Journal of Statistical Physics, 2015, 161 : 509 - 517
  • [22] Tropical real Hurwitz numbers
    Hannah Markwig
    Johannes Rau
    Mathematische Zeitschrift, 2015, 281 : 501 - 522
  • [23] Around spin Hurwitz numbers
    A. D. Mironov
    A. Morozov
    S. M. Natanzon
    A. Yu. Orlov
    Letters in Mathematical Physics, 2021, 111
  • [24] Toda equations for Hurwitz numbers
    Okounkov, A
    MATHEMATICAL RESEARCH LETTERS, 2000, 7 (04) : 447 - 453
  • [25] Tropical real Hurwitz numbers
    Markwig, Hannah
    Rau, Johannes
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 501 - 522
  • [26] Tropical Open Hurwitz Numbers
    Bertrand, Benoit
    Brugalle, Erwan
    Mikhalkin, Grigory
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2011, 125 : 157 - 171
  • [27] Pruned double Hurwitz numbers
    Hahn, Marvin Anas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [28] Generating weighted Hurwitz numbers
    Bertola, M.
    Harnad, J.
    Runov, B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [29] A square root of Hurwitz numbers
    Lee, Junho
    MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 99 - 113
  • [30] Multispecies Weighted Hurwitz Numbers
    Harnad, J.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11