A matrix model for hypergeometric Hurwitz numbers

被引:0
|
作者
J. Ambjørn
L. O. Chekhov
机构
[1] Copenhagen University,Niels Bohr Institute
[2] Radboud University,IMAPP
[3] RAS,Steklov Mathematical Institute
[4] Independent University of Moscow,Laboratoire Poncelet
[5] Århus University,Center for Quantum Geometry of Moduli Spaces
来源
关键词
Hurwitz number; random complex matrix; Kadomtsev-Petviashvili hierarchy; matrix chain; bipartite graph; spectral curve;
D O I
暂无
中图分类号
学科分类号
摘要
We present multimatrix models that are generating functions for the numbers of branched covers of the complex projective line ramified over n fixed points zi, i = 1, ..., n (generalized Grothendieck’s dessins d’enfants) of fixed genus, degree, and ramification profiles at two points z1 and zn. We sum over all possible ramifications at the other n-2 points with a fixed length of the profile at z2 and with a fixed total length of profiles at the remaining n-3 points. All these models belong to a class of hypergeometric Hurwitz models and are therefore tau functions of the Kadomtsev-Petviashvili hierarchy. In this case, we can represent the obtained model as a chain of matrices with a (nonstandard) nearest-neighbor interaction of the type tr MiMi+1−1. We describe the technique for evaluating spectral curves of such models, which opens the way for obtaining 1/N2-expansions of these models using the topological recursion method. These spectral curves turn out to be algebraic.
引用
收藏
页码:1486 / 1498
页数:12
相关论文
共 50 条
  • [31] Hurwitz numbers for real polynomials
    Itenberg, Ilia
    Zvonkine, Dimitri
    COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (03) : 441 - 474
  • [32] On Hurwitz numbers and Hedge integrals
    Ekedahl, T
    Lando, S
    Shapiro, M
    Vainshtein, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1175 - 1180
  • [33] Simple Hurwitz numbers of a disk
    Natanzon, S. M.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (01) : 36 - 47
  • [34] BKP and projective Hurwitz numbers
    Natanzon, Sergey M.
    Orlov, Aleksandr Yu.
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (06) : 1065 - 1109
  • [35] On Hurwitz-Severi numbers
    Burman, Yurii
    Shapiro, Boris
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2019, 19 (01) : 155 - 167
  • [36] Lozenge Tilings and Hurwitz Numbers
    Novak, Jonathan
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (02) : 509 - 517
  • [37] Combinatorial facets of Hurwitz numbers
    Lando, S. K.
    APPLICATIONS OF GROUP THEORY TO COMBINATORICS, 2008, : 109 - 131
  • [38] BKP and projective Hurwitz numbers
    Sergey M. Natanzon
    Aleksandr Yu. Orlov
    Letters in Mathematical Physics, 2017, 107 : 1065 - 1109
  • [39] A square root of Hurwitz numbers
    Junho Lee
    manuscripta mathematica, 2020, 162 : 99 - 113
  • [40] Simple Hurwitz numbers of a disk
    S. M. Natanzon
    Functional Analysis and Its Applications, 2010, 44 : 36 - 47