Minimax d-optimal designs for item response theory models

被引:0
|
作者
Martijn P. F. Berger
C. Y. Joy King
Weng Kee Wong
机构
[1] Maastricht University,Department of Methodology and Statistics
[2] UCLA,Department of Biostatistics
来源
Psychometrika | 2000年 / 65卷
关键词
optimal design; IRT models; minimax; sequential designs;
D O I
暂无
中图分类号
学科分类号
摘要
Various different item response theory (IRT) models can be used in educational and psychological measurement to analyze test data. One of the major drawbacks of these models is that efficient parameter estimation can only be achieved with very large data sets. Therefore, it is often worthwhile to search for designs of the test data that in some way will optimize the parameter estimates. The results from the statistical theory on optimal design can be applied for efficient estimation of the parameters.
引用
收藏
页码:377 / 390
页数:13
相关论文
共 50 条
  • [1] Minimax D-optimal designs for item response theory models
    Berger, MPF
    King, CYJ
    Wong, WK
    [J]. PSYCHOMETRIKA, 2000, 65 (03) : 377 - 390
  • [2] D-OPTIMAL SEQUENTIAL SAMPLING DESIGNS FOR ITEM RESPONSE THEORY MODELS
    BERGER, MPF
    [J]. JOURNAL OF EDUCATIONAL STATISTICS, 1994, 19 (01): : 43 - 56
  • [3] Minimax D-optimal designs for the logistic model
    King, J
    Wong, WK
    [J]. BIOMETRICS, 2000, 56 (04) : 1263 - 1267
  • [4] D-optimal minimax fractional factorial designs
    Lin, Dennis K. J.
    Zhou, Julie
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (02): : 325 - 340
  • [5] Minimax D-optimal designs for multivariate regression models with multi-factors
    Gao, Lucy L.
    Zhou, Julie
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 209 : 160 - 173
  • [6] D-optimal designs for covariate models
    Dey, Aloke
    Mukerjee, Rahul
    [J]. STATISTICS, 2006, 40 (04) : 297 - 305
  • [7] D-Optimal Designs for Covariate Models
    Dutta, Ganesh
    Das, Premadhis
    Mandal, Nripes K.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (01) : 165 - 174
  • [8] D-optimal minimax regression designs on discrete design space
    Zhou, Julie
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (12) : 4081 - 4092
  • [9] D-optimal and nearly D-optimal exact designs for binary response on the ball
    Martin Radloff
    Rainer Schwabe
    [J]. Statistical Papers, 2023, 64 : 1021 - 1040
  • [10] D-optimal and nearly D-optimal exact designs for binary response on the ball
    Radloff, Martin
    Schwabe, Rainer
    [J]. STATISTICAL PAPERS, 2023, 64 (04) : 1021 - 1040