Minimax d-optimal designs for item response theory models

被引:0
|
作者
Martijn P. F. Berger
C. Y. Joy King
Weng Kee Wong
机构
[1] Maastricht University,Department of Methodology and Statistics
[2] UCLA,Department of Biostatistics
来源
Psychometrika | 2000年 / 65卷
关键词
optimal design; IRT models; minimax; sequential designs;
D O I
暂无
中图分类号
学科分类号
摘要
Various different item response theory (IRT) models can be used in educational and psychological measurement to analyze test data. One of the major drawbacks of these models is that efficient parameter estimation can only be achieved with very large data sets. Therefore, it is often worthwhile to search for designs of the test data that in some way will optimize the parameter estimates. The results from the statistical theory on optimal design can be applied for efficient estimation of the parameters.
引用
收藏
页码:377 / 390
页数:13
相关论文
共 50 条
  • [21] D-optimal designs for regression models with length-biased Poisson response
    Ortiz, Isabel
    Rodriguez, Carmelo
    Martinez, Ignacio
    [J]. MODA 8 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2007, : 139 - +
  • [22] NUMERICAL CONSTRUCTION OF PARAMETER MAXIMIN D-OPTIMAL DESIGNS FOR BINARY RESPONSE MODELS
    Biedermann, Stefanie
    Dette, Holger
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 2005, 39 (02) : 127 - 161
  • [23] Algorithm to generate near D-optimal designs for multiple response surface models
    Kansas State Univ, Manhattan, United States
    [J]. IIE Trans, 12 (1073-1081):
  • [24] D-optimal designs for parameter estimation for indirect pharmacodynamic response models.
    Khinkis, L
    Krzyzanski, W
    Jusko, WJ
    Greco, WR
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2003, 73 (02) : P23 - P23
  • [25] An algorithm to generate near D-optimal designs for multiple response surface models
    Chang, S
    [J]. IIE TRANSACTIONS, 1997, 29 (12) : 1073 - 1081
  • [26] Bayesian D-Optimal Designs for Poisson Regression Models
    Zhang, Ying
    Ye, Keying
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (06) : 1234 - 1247
  • [27] Bayesian D-optimal designs for exponential regression models
    Dette, H
    Neugebauer, HM
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 60 (02) : 331 - 349
  • [28] Locally D-optimal designs for exponential regression models
    Dette, Holger
    Melas, Viatcheslav B.
    Wong, Weng Kee
    [J]. STATISTICA SINICA, 2006, 16 (03) : 789 - 803
  • [29] A note on D-optimal designs for models with and without an intercept
    Li, KH
    Lau, TS
    Zhang, CQ
    [J]. STATISTICAL PAPERS, 2005, 46 (03) : 451 - 458
  • [30] Minimax A- and D-optimal integer-valued wavelet designs for estimation
    Oyet, AJ
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (02): : 301 - 316