Minimax D-optimal designs for the logistic model

被引:50
|
作者
King, J [1 ]
Wong, WK [1 ]
机构
[1] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
关键词
approximate designs; computer algorithm; D-optimality; efficiency; information matrix; power logistic model;
D O I
10.1111/j.0006-341X.2000.01263.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose an algorithm for constructing minimax D-optimal designs for the logistic model when only the ranges of the values for both parameters are assumed known. Properties of these designs are studied and compared with optimal Bayesian designs and Sitter's (1992, Biometrics, 48, 1145-1155) minimax D-optimal kk-designs. Examples of minimax D-optimal designs are presented for the logistic and power logistic models, including a dose-response design for rheumatoid arthritis patients.
引用
收藏
页码:1263 / 1267
页数:5
相关论文
共 50 条
  • [1] A note on D-optimal designs for a logistic regression model
    Sebastiani, P
    Settimi, R
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 59 (02) : 359 - 368
  • [2] D-optimal minimax fractional factorial designs
    Lin, Dennis K. J.
    Zhou, Julie
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (02): : 325 - 340
  • [3] Separation in D-optimal experimental designs for the logistic regression model
    Park, Anson R.
    Mancenido, Michelle V.
    Montgomery, Douglas C.
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (03) : 776 - 787
  • [4] D-OPTIMAL DESIGNS FOR MULTINOMIAL LOGISTIC MODELS
    Bu, Xianwei
    Majumdar, Dibyen
    Yang, Jie
    [J]. ANNALS OF STATISTICS, 2020, 48 (02): : 983 - 1000
  • [5] An algorithmic approach to construct D-optimal saturated designs for logistic model
    Lall, Shwetank
    Jaggi, Seema
    Varghese, Eldho
    Varghese, Cini
    Bhowmik, Arpan
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (06) : 1191 - 1199
  • [6] D-optimal designs for logistic regression in two variables
    Haines, Linda M.
    Kabera, Gaetan
    Ndlovu, Principal
    O'Brien, Timothy E.
    [J]. MODA 8 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2007, : 91 - +
  • [7] Minimax D-optimal designs for item response theory models
    Berger, MPF
    King, CYJ
    Wong, WK
    [J]. PSYCHOMETRIKA, 2000, 65 (03) : 377 - 390
  • [9] Minimax d-optimal designs for item response theory models
    Martijn P. F. Berger
    C. Y. Joy King
    Weng Kee Wong
    [J]. Psychometrika, 2000, 65 : 377 - 390
  • [10] Bayesian D-optimal designs for the two parameter logistic mixed effects model
    Abebe, Haftom T.
    Tan, Frans E. S.
    Van Breukelen, Gerard J. P.
    Berger, Martijn P. F.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 1066 - 1076