Universal Sequences of Composition Operators

被引:0
|
作者
S. Charpentier
A. Mouze
机构
[1] Aix-Marseille Universite,Institut de Mathématiques, UMR 7373
[2] Laboratoire Paul Painlevé,undefined
[3] UMR 8524,undefined
[4] Cité Scientifique,undefined
[5] École Centrale de Lille,undefined
[6] Cité Scientifique,undefined
来源
关键词
Composition operators; Universal sequences of operators; 30K15; 47B33;
D O I
暂无
中图分类号
学科分类号
摘要
Let G and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} be two planar domains. We give necessary and sufficient conditions on a sequence (ϕn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi _n)$$\end{document} of eventually injective holomorphic mappings from G to Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} for the existence of a function f∈H(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in H(\Omega )$$\end{document} whose orbit under the composition by (ϕn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi _n)$$\end{document} is dense in H(G). This extends a result of the same nature obtained by Grosse-Erdmann and Mortini when G=Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\Omega $$\end{document}. An interconnexion between the topological properties of G and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} appears. Further, in order to exhibit in a natural way holomorphic functions with wild boundary behaviour on planar domains, we study a certain type of universality for sequences of continuous mappings from a union of Jordan curves to a domain.
引用
收藏
相关论文
共 50 条