Universal Sequences of Composition Operators

被引:0
|
作者
S. Charpentier
A. Mouze
机构
[1] Aix-Marseille Universite,Institut de Mathématiques, UMR 7373
[2] Laboratoire Paul Painlevé,undefined
[3] UMR 8524,undefined
[4] Cité Scientifique,undefined
[5] École Centrale de Lille,undefined
[6] Cité Scientifique,undefined
来源
关键词
Composition operators; Universal sequences of operators; 30K15; 47B33;
D O I
暂无
中图分类号
学科分类号
摘要
Let G and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} be two planar domains. We give necessary and sufficient conditions on a sequence (ϕn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi _n)$$\end{document} of eventually injective holomorphic mappings from G to Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} for the existence of a function f∈H(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in H(\Omega )$$\end{document} whose orbit under the composition by (ϕn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi _n)$$\end{document} is dense in H(G). This extends a result of the same nature obtained by Grosse-Erdmann and Mortini when G=Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\Omega $$\end{document}. An interconnexion between the topological properties of G and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} appears. Further, in order to exhibit in a natural way holomorphic functions with wild boundary behaviour on planar domains, we study a certain type of universality for sequences of continuous mappings from a union of Jordan curves to a domain.
引用
收藏
相关论文
共 50 条
  • [31] Universal Sequences
    Henk D. L. Hollmann
    J. H. van Lint
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 347 - 352
  • [32] Universal Dunkl operators
    Meshcheryakov, V. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (01) : 159 - 161
  • [33] UNIVERSAL QUASINILPOTENT OPERATORS
    HERRERO, DA
    ACTA SCIENTIARUM MATHEMATICARUM, 1976, 38 (3-4): : 291 - 300
  • [34] A Note on Universal Operators
    Oikhberg, Timur
    ORDERED STRUCTURES AND APPLICATIONS, 2016, : 339 - 347
  • [35] Commutator of composition operators with adjoints of composition operators
    Clifford, John H.
    Levi, David
    Narayan, Sivaram K.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (06) : 677 - 686
  • [36] UNIVERSAL SEQUENCES OF FUNCTIONS
    MENCHOV, D
    DOKLADY AKADEMII NAUK SSSR, 1963, 151 (06): : 1283 - &
  • [37] UNIVERSAL LOGIC SEQUENCES
    DAWSON, E
    GOLDBURG, B
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 453 : 426 - 432
  • [38] BOUNDS ON UNIVERSAL SEQUENCES
    BARNOY, A
    BORODIN, A
    KARCHMER, M
    LINIAL, N
    WERMAN, M
    SIAM JOURNAL ON COMPUTING, 1989, 18 (02) : 268 - 277
  • [39] UNIVERSAL TRAVERSAL SEQUENCES
    IFEIGENBAUM, J
    REINGOLD, N
    AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (03): : 262 - 265
  • [40] SIMPLIFICATION OF SEQUENCES OF OPERATORS
    POLGE, RJ
    CALLAS, L
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1972, SMC2 (04): : 526 - &