On the convergence of sequences of weighted composition operators on certain weighted Hardy spaces

被引:0
|
作者
Bahram Khani-Robati
Samira Mehrangiz
机构
[1] Shiraz University,Department of Mathematics, School of Sciences
关键词
Weighted composition operators; Weighted Hardy spaces; Weighted Bergman spaces; Weak operator convergence; Strong operator convergence; Uniform operator convergence; Hilbert Schmidt norm; Primary 47B33; Secondary 47B38; 47B02;
D O I
暂无
中图分类号
学科分类号
摘要
Let H2(β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2 (\beta )$$\end{document} be a weighted Hardy space. In this paper under certain conditions on H2(β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2 (\beta )$$\end{document}, convergence of a sequence of weighted composition operators in the weak, strong and uniform operator topologies, in terms of the convergence of the corresponding sequences of inducing maps are investigated. Let Cψ,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\psi ,\varphi }$$\end{document} be a bounded weighted composition operator and {Cψ,φn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{C^n _{\psi , \varphi }\}$$\end{document} be the sequence of its powers. Under certain conditions on H2(β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2(\beta )$$\end{document}, φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} we investigate convergence of the induced weighted composition operators Cψ,φn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^n _{\psi , \varphi }$$\end{document}. Let AG2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_G ^2$$\end{document} be a weighted Bergman space. In this paper we investigate convergence of a sequence of weighted composition operators in the Hilbert Schmidt norm in terms of the convergence of the corresponding sequences of inducing maps.
引用
收藏
页码:135 / 147
页数:12
相关论文
共 50 条
  • [1] On the convergence of sequences of weighted composition operators on certain weighted Hardy spaces
    Khani-Robati, Bahram
    Mehrangiz, Samira
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2024, 17 (01): : 135 - 147
  • [2] A note on composition operators on certain weighted Hardy spaces
    Keshavarzi, H.
    Khani-Robati, B.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1483 - 1495
  • [3] A note on composition operators on certain weighted Hardy spaces
    H. Keshavarzi
    B. Khani-Robati
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1483 - 1495
  • [4] Weighted Composition Operators on Weighted Hardy Spaces
    Anuradha Gupta
    Bhawna Gupta
    Computational Methods and Function Theory, 2019, 19 : 519 - 540
  • [5] Weighted Composition Operators on Weighted Hardy Spaces
    Gupta, Anuradha
    Gupta, Bhawna
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (03) : 519 - 540
  • [6] GENERALIZED WEIGHTED COMPOSITION OPERATORS ON WEIGHTED HARDY SPACES
    Hu, Lian
    Li, Songxiao
    Yang, Rong
    OPERATORS AND MATRICES, 2023, 17 (04): : 1109 - 1124
  • [7] On Weighted Generalized Composition Operators on Weighted Hardy Spaces
    Datt, Gopal
    Jain, Mukta
    Ohri, Neelima
    FILOMAT, 2020, 34 (05) : 1689 - 1700
  • [8] Weighted composition operators on Hardy spaces
    Contreras, MD
    Hernández-Díaz, AG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (01) : 224 - 233
  • [9] Weighted composition operators on Hardy spaces
    Stylogiannis, Georgios
    ACTA SCIENTIARUM MATHEMATICARUM, 2012, 78 (1-2): : 213 - 239
  • [10] Weighted composition operators on Hardy spaces
    Georgios Stylogiannis
    Acta Scientiarum Mathematicarum, 2012, 78 (1-2): : 213 - 239