On the convergence of sequences of weighted composition operators on certain weighted Hardy spaces

被引:0
|
作者
Bahram Khani-Robati
Samira Mehrangiz
机构
[1] Shiraz University,Department of Mathematics, School of Sciences
关键词
Weighted composition operators; Weighted Hardy spaces; Weighted Bergman spaces; Weak operator convergence; Strong operator convergence; Uniform operator convergence; Hilbert Schmidt norm; Primary 47B33; Secondary 47B38; 47B02;
D O I
暂无
中图分类号
学科分类号
摘要
Let H2(β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2 (\beta )$$\end{document} be a weighted Hardy space. In this paper under certain conditions on H2(β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2 (\beta )$$\end{document}, convergence of a sequence of weighted composition operators in the weak, strong and uniform operator topologies, in terms of the convergence of the corresponding sequences of inducing maps are investigated. Let Cψ,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\psi ,\varphi }$$\end{document} be a bounded weighted composition operator and {Cψ,φn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{C^n _{\psi , \varphi }\}$$\end{document} be the sequence of its powers. Under certain conditions on H2(β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2(\beta )$$\end{document}, φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} we investigate convergence of the induced weighted composition operators Cψ,φn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^n _{\psi , \varphi }$$\end{document}. Let AG2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_G ^2$$\end{document} be a weighted Bergman space. In this paper we investigate convergence of a sequence of weighted composition operators in the Hilbert Schmidt norm in terms of the convergence of the corresponding sequences of inducing maps.
引用
收藏
页码:135 / 147
页数:12
相关论文
共 50 条