Bach-Flat Kähler Surfaces

被引:0
|
作者
Claude LeBrun
机构
[1] Stony Brook University,
来源
关键词
Riemannian 4-manifold; Bach tensor; Kähler metric; Weyl curvature; Einstein metric; Scalar curvature;
D O I
暂无
中图分类号
学科分类号
摘要
A Riemannian metric on a compact 4-manifold is said to be Bach-flat if it is a critical point for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm of the Weyl curvature. When the Riemannian 4-manifold in question is a Kähler surface, we provide a rough classification of solutions, followed by detailed results regarding each case in the classification. The most mysterious case prominently involves 3-dimensional CR manifolds.
引用
收藏
页码:2491 / 2514
页数:23
相关论文
共 50 条
  • [1] Bach-Flat Kahler Surfaces
    LeBrun, Claude
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2491 - 2514
  • [2] Rigidity of Bach-Flat Manifolds
    Kim, Seongtag
    EXTENDED ABSTRACTS FALL 2013: GEOMETRICAL ANALYSIS; TYPE THEORY, HOMOTOPY THEORY AND UNIVALENT FOUNDATIONS, 2015, : 35 - 39
  • [3] Bochner-Kähler and Bach flat manifolds
    Amalendu Ghosh
    Ramesh Sharma
    Archiv der Mathematik, 2019, 113 : 551 - 560
  • [4] Bach-flat Lie groups in dimension 4
    Abbena, Elsa
    Garbiero, Sergio
    Salamon, Simon
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (7-8) : 303 - 306
  • [5] Rigidity of bach-flat gradient schouten solitons
    Borges, Valter
    MANUSCRIPTA MATHEMATICA, 2024, 175 (1-2) : 409 - 419
  • [6] ON BACH-FLAT GRADIENT SHRINKING RICCI SOLITONS
    Cao, Huai-Dong
    Chen, Qiang
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) : 1149 - 1169
  • [7] Bach-flat gradient steady Ricci solitons
    Huai-Dong Cao
    Giovanni Catino
    Qiang Chen
    Carlo Mantegazza
    Lorenzo Mazzieri
    Calculus of Variations and Partial Differential Equations, 2014, 49 : 125 - 138
  • [8] Bach-flat gradient steady Ricci solitons
    Cao, Huai-Dong
    Catino, Giovanni
    Chen, Qiang
    Mantegazza, Carlo
    Mazzieri, Lorenzo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) : 125 - 138
  • [9] Rigidity of noncompact complete Bach-flat manifolds
    Kim, Seongtag
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (04) : 637 - 642
  • [10] Bach-flat asymptotically locally Euclidean metrics
    Gang Tian
    Jeff Viaclovsky
    Inventiones mathematicae, 2005, 160 : 357 - 415