Characterisation of homogeneous fractional Sobolev spaces

被引:0
|
作者
Lorenzo Brasco
David Gómez-Castro
Juan Luis Vázquez
机构
[1] Università degli Studi di Ferrara,Dipartimento di Matematica e Informatica
[2] University of Oxford,Mathematical Institute
[3] Universidad Complutense de Madrid,Instituto de Matemática Interdisciplinar
[4] Universidad Autónoma de Madrid,Departamento de Matemáticas
关键词
46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Our aim is to characterize the homogeneous fractional Sobolev–Slobodeckiĭ spaces Ds,p(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}^{s,p} (\mathbb {R}^n)$$\end{document} and their embeddings, for s∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in (0,1]$$\end{document} and p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document}. They are defined as the completion of the set of smooth and compactly supported test functions with respect to the Gagliardo–Slobodeckiĭ seminorms. For sp<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\,p < n$$\end{document} or s=p=n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s = p = n = 1$$\end{document} we show that Ds,p(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}^{s,p}(\mathbb {R}^n)$$\end{document} is isomorphic to a suitable function space, whereas for sp≥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\,p \ge n$$\end{document} it is isomorphic to a space of equivalence classes of functions, differing by an additive constant. As one of our main tools, we present a Morrey–Campanato inequality where the Gagliardo–Slobodeckiĭ seminorm controls from above a suitable Campanato seminorm.
引用
收藏
相关论文
共 50 条
  • [1] Characterisation of homogeneous fractional Sobolev spaces
    Brasco, Lorenzo
    Gomez-Castro, David
    Vazquez, Juan Luis
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (02)
  • [2] Fractional Laplacian, homogeneous Sobolev spaces and their realizations
    Alessandro Monguzzi
    Marco M. Peloso
    Maura Salvatori
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 2243 - 2261
  • [3] A note on homogeneous Sobolev spaces of fractional order
    Brasco, Lorenzo
    Salort, Ariel
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (04) : 1295 - 1330
  • [4] A note on homogeneous Sobolev spaces of fractional order
    Lorenzo Brasco
    Ariel Salort
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 1295 - 1330
  • [5] Fractional Laplacian, homogeneous Sobolev spaces and their realizations
    Monguzzi, Alessandro
    Peloso, Marco M.
    Salvatori, Maura
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (06) : 2243 - 2261
  • [6] On Sobolev spaces of fractional order and ε-families of operators on spaces of homogeneous type
    Gatto, AE
    Vági, S
    STUDIA MATHEMATICA, 1999, 133 (01) : 19 - 27
  • [7] Fractional differential operators, fractional Sobolev spaces and fractional variation on homogeneous Carnot groups
    Zhang, Tong
    Zhu, Jie-Xiang
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (04) : 1786 - 1841
  • [8] Fractional differential operators, fractional Sobolev spaces and fractional variation on homogeneous Carnot groups
    Tong Zhang
    Jie-Xiang Zhu
    Fractional Calculus and Applied Analysis, 2023, 26 : 1786 - 1841
  • [9] Realizations of homogeneous Sobolev spaces
    Bourdaud, Gerard
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (10-11) : 857 - 874
  • [10] SOBOLEV INEQUALITIES ON HOMOGENEOUS SPACES
    BIROLI, M
    MOSCO, U
    POTENTIAL ANALYSIS, 1995, 4 (04) : 311 - 324