A note on homogeneous Sobolev spaces of fractional order

被引:30
|
作者
Brasco, Lorenzo [1 ]
Salort, Ariel [2 ,3 ]
机构
[1] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 35, I-44121 Ferrara, Italy
[2] Univ Buenos Aires, FCEN, Dept Matemat, Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, IMAS, Buenos Aires, DF, Argentina
关键词
Nonlocal operators; Fractional Sobolev spaces; Real interpolation; Poincare inequality;
D O I
10.1007/s10231-018-0817-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a homogeneous fractional Sobolev space obtained by completion of the space of smooth test functions, with respect to a Sobolev-Slobodecki norm. We compare it to the fractional Sobolev space obtained by the K-method in real interpolation theory. We show that the two spaces do not always coincide and give some sufficient conditions on the open sets for this to happen. We also highlight some unnatural behaviors of the interpolation space. The treatment is as self-contained as possible.
引用
收藏
页码:1295 / 1330
页数:36
相关论文
共 50 条
  • [1] A note on homogeneous Sobolev spaces of fractional order
    Lorenzo Brasco
    Ariel Salort
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 1295 - 1330
  • [2] On Sobolev spaces of fractional order and ε-families of operators on spaces of homogeneous type
    Gatto, AE
    Vági, S
    STUDIA MATHEMATICA, 1999, 133 (01) : 19 - 27
  • [3] Characterisation of homogeneous fractional Sobolev spaces
    Brasco, Lorenzo
    Gomez-Castro, David
    Vazquez, Juan Luis
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (02)
  • [4] Characterisation of homogeneous fractional Sobolev spaces
    Lorenzo Brasco
    David Gómez-Castro
    Juan Luis Vázquez
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [5] A note on truncations in fractional Sobolev spaces
    Musina, Roberta
    Nazarov, Alexander, I
    BULLETIN OF MATHEMATICAL SCIENCES, 2019, 9 (01)
  • [6] Fractional Laplacian, homogeneous Sobolev spaces and their realizations
    Alessandro Monguzzi
    Marco M. Peloso
    Maura Salvatori
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 2243 - 2261
  • [7] Fractional Laplacian, homogeneous Sobolev spaces and their realizations
    Monguzzi, Alessandro
    Peloso, Marco M.
    Salvatori, Maura
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (06) : 2243 - 2261
  • [8] Regularization in Sobolev Spaces with Fractional Order
    Assmann, U.
    Roesch, A.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (03) : 271 - 286
  • [9] EMBEDDINGS OF SOBOLEV SPACES OF FRACTIONAL ORDER
    MARTINS, JS
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1977, 79 : 1 - 24
  • [10] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    Potential Analysis, 2015, 43 : 199 - 240