Regularization in Sobolev Spaces with Fractional Order

被引:2
|
作者
Assmann, U. [1 ]
Roesch, A. [1 ]
机构
[1] Univ Duisburg Essen, Dept Math, D-45127 Essen, Germany
关键词
Inverse problems; Lagrange multipliers; Multilevel operator; Variational inequalities; Parameter identification; Optimal control; 49N45; 49K20; 49N60; 49N15; HILBERT SCALES;
D O I
10.1080/01630563.2014.970644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the minimization of a quadratic functional where the Tichonov regularization term is an H ( s )-norm with a fractional s > 0. Moreover, pointwise bounds for the unknown solution are given. A multilevel approach as an equivalent norm concept is introduced. We show higher regularity of the solution of the variational inequality. This regularity is used to show the existence of regular Lagrange multipliers in function space. The theory is illustrated by two applications: a Dirichlet boundary control problem and a parameter identification problem.
引用
收藏
页码:271 / 286
页数:16
相关论文
共 50 条
  • [1] EMBEDDINGS OF SOBOLEV SPACES OF FRACTIONAL ORDER
    MARTINS, JS
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1977, 79 : 1 - 24
  • [2] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    Potential Analysis, 2015, 43 : 199 - 240
  • [3] FRACTIONAL ORDER SOBOLEV SPACES ON WIENER SPACE
    WATANABE, S
    PROBABILITY THEORY AND RELATED FIELDS, 1993, 95 (02) : 175 - 198
  • [4] Quadratic forms and Sobolev spaces of fractional order
    Bux, Kai-Uwe
    Kassmann, Moritz
    Schulze, Tim
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (03) : 841 - 866
  • [5] A note on homogeneous Sobolev spaces of fractional order
    Brasco, Lorenzo
    Salort, Ariel
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (04) : 1295 - 1330
  • [6] A note on homogeneous Sobolev spaces of fractional order
    Lorenzo Brasco
    Ariel Salort
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 1295 - 1330
  • [7] Fractional order Orlicz-Sobolev spaces
    Fernandez Bonder, Julian
    Salort, Ariel M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (02) : 333 - 367
  • [8] Fock-Sobolev Spaces of Fractional Order
    Cho, Hong Rae
    Choe, Boo Rim
    Koo, Hyungwoon
    POTENTIAL ANALYSIS, 2015, 43 (02) : 199 - 240
  • [9] Magnetic fractional order Orlicz-Sobolev spaces
    Fernandez Bonder, Julian
    Salort, Ariel M.
    STUDIA MATHEMATICA, 2021, 259 (01) : 1 - 24
  • [10] Embedding constants for periodic Sobolev spaces of fractional order
    V. L. Vaskevich
    Siberian Mathematical Journal, 2008, 49 : 806 - 813