Wirelessly powered large-area electronics for the Internet of Things

被引:0
|
作者
Luis Portilla
Kalaivanan Loganathan
Hendrik Faber
Aline Eid
Jimmy G. D. Hester
Manos M. Tentzeris
Marco Fattori
Eugenio Cantatore
Chen Jiang
Arokia Nathan
Gianluca Fiori
Taofeeq Ibn-Mohammed
Thomas D. Anthopoulos
Vincenzo Pecunia
机构
[1] Fudan University,Frontier Institute of Chip and System
[2] King Abdullah University of Science and Technology (KAUST),KAUST Solar Center (KSC)
[3] University of Michigan,Department of Electrical Engineering and Computer Science
[4] Atheraxon Inc.,Electrical and Computer Engineering
[5] Georgia Institute of Technology,Integrated Circuits Group
[6] Eindhoven University of Technology,Department of Electronic Engineering
[7] Tsinghua University,Darwin College
[8] University of Cambridge,Dipartimento di Ingegneria dell’Informazione
[9] Università di Pisa,Computational Sustainability Research Group (CSRG), WMG
[10] The University of Warwick,School of Sustainable Energy Engineering
[11] Simon Fraser University,undefined
来源
Nature Electronics | 2023年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Powering the increasing number of sensor nodes used in the Internet of Things creates a technological challenge. The economic and sustainability issues of battery-powered devices mean that wirelessly powered operation—combined with environmentally friendly circuit technologies—will be needed. Large-area electronics—which can be based on organic semiconductors, amorphous metal oxide semiconductors, semiconducting carbon nanotubes and two-dimensional semiconductors—could provide a solution. Here we examine the potential of large-area electronics technology in the development of sustainable, wirelessly powered Internet of Things sensor nodes. We provide a system-level analysis of wirelessly powered sensor nodes, identifying the constraints faced by such devices and highlighting promising architectures and design approaches. We then explore the use of large-area electronics technology in wirelessly powered Internet of Things sensor nodes, with a focus on low-power transistor circuits for digital processing and signal amplification, as well as high-speed diodes and printed antennas for data communication and radiofrequency energy harvesting.
引用
收藏
页码:10 / 17
页数:7
相关论文
共 50 条
  • [21] Large-Area MXene Electrode Array for Flexible Electronics
    Lyu, Benzheng
    Kim, Minje
    Jing, Hongyue
    Kang, Joohoon
    Qian, Chuan
    Lee, Sungjoo
    Cho, Jeong Ho
    [J]. ACS NANO, 2019, 13 (10) : 11392 - 11400
  • [22] ELECTRONICS AND READOUT OF A LARGE-AREA SILICON DETECTOR FOR LHC
    BORER, K
    MUNDAY, DJ
    PARKER, MA
    ANGHINOLFI, F
    ASPELL, P
    CAMPBELL, M
    CHILINGAROV, A
    JARRON, P
    HEIJNE, EHM
    SANTIARD, JC
    SCAMPOLI, P
    VERWEIJ, H
    GOSSLING, C
    LISOWSKI, B
    REICHOLD, A
    SPIWOKS, R
    TSESMELIS, E
    BENSLAMA, K
    BONINO, R
    CLARK, AG
    COUYOUMTZELIS, C
    KAMBARA, H
    WU, X
    FRETWURST, E
    LINDSTROEM, G
    SCHULTZ, T
    BARDOS, RA
    GORFINE, GW
    MOORHEAD, GF
    TAYLOR, GN
    TOVEY, SN
    BIBBY, JH
    HAWKINGS, RJ
    KUNDU, N
    WEIDBERG, A
    CAMPBELL, D
    MURRAY, P
    SELLER, P
    TEIGER, J
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1994, 344 (01): : 185 - 193
  • [23] Digital lithography for large-area electronics on flexible substrates
    Wong, William S.
    Lujan, Rene
    Daniel, Jurgen H.
    Limb, Scott
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) : 1981 - 1985
  • [24] Gravure Printing of Graphene for Large-Area Flexible Electronics
    Secor, Ethan B.
    Lim, Sooman
    Zhang, Heng
    Frisbie, C. Daniel
    Francis, Lorraine F.
    Hersam, Mark C.
    [J]. ADVANCED MATERIALS, 2014, 26 (26) : 4533 - +
  • [25] Large-Area, Ensemble Molecular Electronics: Motivation and Challenges
    Vilan, Ayelet
    Aswal, Dinesh
    Cahen, David
    [J]. CHEMICAL REVIEWS, 2017, 117 (05) : 4248 - 4286
  • [26] Thin-film transistors for large-area electronics
    Geng, Di
    Wang, Kai
    Li, Ling
    Myny, Kris
    Nathan, Arokia
    Jang, Jin
    Kuo, Yue
    Liu, Ming
    [J]. NATURE ELECTRONICS, 2023, 6 (12) : 963 - 972
  • [27] A stretchable nanoscale dielectric for large-area wearable electronics
    Koo, Ja Hoon
    Son, Donghee
    [J]. NATURE ELECTRONICS, 2023, 6 (2) : 107 - 108
  • [28] Wirelessly Powered Internet-of-Things Sensors Facilitated by an Electrically Small Egyptian Axe Dipole Rectenna
    Lin, Wei
    Ziolkowski, Richard W.
    [J]. PROCEEDINGS OF THE 2019 IEEE ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2019, : 891 - 892
  • [29] Large-area plastic nanogap electronics enabled by adhesion lithography
    James Semple
    Dimitra G. Georgiadou
    Gwenhivir Wyatt-Moon
    Minho Yoon
    Akmaral Seitkhan
    Emre Yengel
    Stephan Rossbauer
    Francesca Bottacchi
    Martyn A. McLachlan
    Donal D. C. Bradley
    Thomas D. Anthopoulos
    [J]. npj Flexible Electronics, 2
  • [30] Amorphous silicon: Vehicle and test bed for large-area electronics
    Wagner, Sigurd
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2010, 207 (03): : 501 - 509