The non-holonomic double pendulum: An example of non-linear non-holonomic system

被引:0
|
作者
Sergio Benenti
机构
[1] University of Turin,Department of Mathematics
来源
关键词
non-holonomic systems; dynamical systems; 37J60; 70F25;
D O I
暂无
中图分类号
学科分类号
摘要
An example of physically realizable non-linear non-holonomic mechanical system is proposed. The dynamical equations are written following a general method proposed in an earlier paper. In order to make this paper self-contained, an improved and shortened approach to the dynamics of non-holonomic systems is illustrated in preliminary sections.
引用
收藏
页码:417 / 442
页数:25
相关论文
共 50 条
  • [12] LINEAR DIFFERENTIAL EQUATIONS WITH NON-HOLONOMIC CONSTRAINTS
    SAVET, PH
    TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES, 1964, 27 (02): : 144 - &
  • [13] MECHANICS - On the general theory of holonomic and non-holonomic movement system
    Delassus, Et.
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1917, 164 (06): : 270 - 272
  • [14] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    RAMIREZ, R
    HADRONIC JOURNAL, 1983, 6 (06): : 1693 - 1704
  • [15] On the model of non-holonomic billiard
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2011, 16 : 653 - 662
  • [16] On Generalized Non-holonomic Systems
    P. Balseiro
    J. E. Solomin
    Letters in Mathematical Physics, 2008, 84 : 15 - 30
  • [17] Geometry of non-holonomic diffusion
    Hochgerner, Simon
    Ratiu, Tudor S.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (02) : 273 - 319
  • [18] Non-holonomic control I
    Brion, E
    Akulin, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    QUANTUM INFORMATICS 2004, 2004, 5833 : 62 - 69
  • [20] On non-holonomic systems equilibria
    Kozlov, V.V.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 1994, (03): : 74 - 79