Non-holonomic control I

被引:0
|
作者
Brion, E [1 ]
Akulin, VM [1 ]
Comparat, D [1 ]
Dumer, I [1 ]
Gershkovich, V [1 ]
Harel, G [1 ]
Kurizki, G [1 ]
Mazets, I [1 ]
Pillet, P [1 ]
机构
[1] CNRS, Aime Cotton Lab, F-91405 Orsay, France
来源
QUANTUM INFORMATICS 2004 | 2004年 / 5833卷
关键词
D O I
10.1117/12.620307
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this paper, we present a universal control technique, the non-holonomic control, which allows us to impose any arbitrarily prescribed unitary evolution to any quantum system through the alternate application of two well-chosen perturbations.
引用
收藏
页码:62 / 69
页数:8
相关论文
共 50 条
  • [1] Non-holonomic control II : Non-holonomic quantum devices
    Brion, E
    Akulim, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    [J]. Quantum Informatics 2004, 2004, 5833 : 70 - 79
  • [2] Non-holonomic control III : Coherence protection by the quantum zeno effect and non-holonomic control
    Brion, E
    Akulin, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    [J]. Quantum Informatics 2004, 2004, 5833 : 80 - 90
  • [3] Tracking control of non-holonomic mobile manipulators
    Minami, M
    Kotsuru, T
    Asakura, T
    [J]. PROCEEDINGS OF THE 4TH ASIA-PACIFIC CONFERENCE ON CONTROL & MEASUREMENT, 2000, : 361 - 366
  • [4] The non-Holonomic mechanics
    Kupka, I
    Oliva, WM
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 169 - 189
  • [5] The non-holonomic double pendulum: An example of non-linear non-holonomic system
    Sergio Benenti
    [J]. Regular and Chaotic Dynamics, 2011, 16 : 417 - 442
  • [6] On non-holonomic connexions
    Schouten, JA
    [J]. PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1928, 31 (1/5): : 291 - 299
  • [7] The Non-holonomic Double Pendulum: an Example of Non-linear Non-holonomic System
    Benenti, Sergio
    [J]. REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05): : 417 - 442
  • [8] Non-holonomic integrators
    Cortés, J
    Martínez, S
    [J]. NONLINEARITY, 2001, 14 (05) : 1365 - 1392
  • [9] NON-HOLONOMIC CONNECTIONS ON VECTOR BUNDLES .I.
    VIRSIK, J
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1967, 17 (01) : 108 - &
  • [10] Centralized formation control of non-holonomic mobile robots
    Carelli, R
    de la Cruz, C
    Roberti, F
    [J]. LATIN AMERICAN APPLIED RESEARCH, 2006, 36 (02) : 63 - 69