Age estimation based on improved discriminative Gaussian process latent variable model

被引:0
|
作者
Lijun Cai
Lei Huang
Changping Liu
机构
[1] Institute of Automation,
[2] Chinese Academy of Sciences,undefined
来源
关键词
Age estimation; Discriminative Gaussian process latent variable model; Kernel fisher discriminant analysis; Gaussian process regression;
D O I
暂无
中图分类号
学科分类号
摘要
Affected by various factors (genes, living habits and so on), different people present distinct aging patterns. To discover the underlying trend of aging patterns, we propose an effective age estimation method based on DGPLVM (Discriminative Gaussian Process Latent Variable Model). DGPLVM is a kind of discriminative latent variable method for manifold learning. It discovers the low-dimensional manifold by employing a discriminative prior distribution over the latent space. DGPLVM with KFDA (Kernel Fisher Discriminant Analysis) prior has been studied and successfully applied to face verification. Different with face verification which is a two-class problem, age estimation is a linearly inseparable multi-class problem. In this paper, DGPLVM with KFDA is reformulated to get the low-dimensional representations for age estimation. After low-dimensional representations are obtained, Gaussian process regression model is adopted to find the age regressor mapping low-dimensional representations to ages. Experimental results on two widely used databases FG-NET and MORPH show that reformulated DGPLVM with KFDA is a good application in age estimation and achieves comparable results to state-of-the arts.
引用
收藏
页码:11977 / 11994
页数:17
相关论文
共 50 条
  • [41] Manifold Denoising with Gaussian Process Latent Variable Models
    Gao, Yan
    Chan, Kap Luk
    Yau, Wei-Yun
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3719 - 3722
  • [42] Applications of Gaussian Process Latent Variable Models in Finance
    Nirwan, Rajbir S.
    Bertschinger, Nils
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 1209 - 1221
  • [43] Gaussian process latent variable models for fault detection
    Eciolaza, Luka
    Alkarouri, A.
    Lawrence, N. D.
    Kadirkamanathan, V.
    Fleming, P. J.
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 287 - 292
  • [44] Multimodal Gaussian Process Latent Variable Models with Harmonization
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5039 - 5047
  • [45] Speeding Up Latent Variable Gaussian Graphical Model Estimation via Nonconvex Optimization
    Xu, Pan
    Ma, Jian
    Gu, Quanquan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [46] INTEREST LEVEL ESTIMATION VIA MULTI-MODAL GAUSSIAN PROCESS LATENT VARIABLE FACTORIZATION
    Kamikawa, Kyohei
    Maeda, Keisuke
    Ogawa, Takahiro
    Haseyama, Miki
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1209 - 1213
  • [47] Gaussian process latent variable model based on immune clonal selection for SAR target feature extraction and recognition
    Zhang Xiang-Rong
    Gou Li-Min
    Li Yang-Yang
    Feng Jie
    Jiao Li-Cheng
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2013, 32 (03) : 231 - 236
  • [48] Extended Poisson Gaussian-Process Latent Variable Model for Unsupervised Neural Decoding
    Luo, Della Daiyi
    Giri, Bapun
    Diba, Kamran
    Kemere, Caleb
    [J]. NEURAL COMPUTATION, 2024, 36 (08) : 1449 - 1475
  • [49] Covariate dimension reduction for survival data via the Gaussian process latent variable model
    Barrett, James E.
    Coolen, Anthony C. C.
    [J]. STATISTICS IN MEDICINE, 2016, 35 (08) : 1340 - 1353
  • [50] Real-time body tracking using a Gaussian process latent variable model
    Hou, Shaobo
    Galata, Aphrodite
    Caillette, Fabrice
    Thacker, Neil
    Bromiley, Paul
    [J]. 2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 928 - +