Spectrum of self-affine measures on the Sierpinski family

被引:0
|
作者
M. Megala
Srijanani Anurag Prasad
机构
[1] Indian Institute of Technology Tirupati,Department of Mathematics and Statistics
来源
关键词
Iterated function system; Self-affine measure; Spectrum; Compatible pair; Digit set; 28A80; 42C05; 46C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, a spectrum Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} for the integral Sierpinski measures μM,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M, D}$$\end{document} with the digit set D=00,10,01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D= \left\{ \begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right\} $$\end{document} is derived for a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times 2$$\end{document} diagonal matrix M with entries as 3ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\ell _1$$\end{document} and 3ℓ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\ell _4$$\end{document} and for off-diagonal matrix M with both the off-diagonal entries as 3ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\ell $$\end{document} where, ℓ,ℓ1,ℓ4∈Z\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ,\ell _1,\ell _4 \in {\mathbb {Z}}{\setminus }{\{0\}}$$\end{document}. Additionally, the spectrum of μM,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M, D}$$\end{document} for a given M and a generalized digit set D is also examined. The spectrum of self-affine measures μM,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M, D}$$\end{document} on spatial Sierpinski gasket is obtained when M is diagonal matrix with entries ℓi∈2Z\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _i \in 2{\mathbb {Z}}\setminus {\{0\}}$$\end{document}, sign of ℓi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _i$$\end{document}’s are same and D={0,e1,e2,e3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=\{0, e_1, e_2, e_3\}$$\end{document}, where ei′s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_i's $$\end{document} are the standard basis in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}. Further, the spectrum of μM,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M, D}$$\end{document} for some off-diagonal 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} matrices is also found.
引用
收藏
页码:157 / 169
页数:12
相关论文
共 50 条
  • [21] Self-affine multifractal Sierpinski Sponges in Rd
    Olsen, L
    PACIFIC JOURNAL OF MATHEMATICS, 1998, 183 (01) : 143 - 199
  • [22] Non-spectrality of self-affine measures on the three-dimensional Sierpinski gasket
    Lu, Zheng-Yi
    Dong, Xin-Han
    Zhang, Peng-Fei
    FORUM MATHEMATICUM, 2019, 31 (06) : 1447 - 1455
  • [23] The Lq$L∧q$ spectrum of self-affine measures on sponges
    Kolossvary, Istvan
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, : 666 - 701
  • [24] Tiling and Spectrality for Generalized Sierpinski Self-Affine Sets
    Chen, Ming-Liang
    Liu, Jing-Cheng
    Zheng, Jia
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)
  • [25] Tiling and Spectrality for Generalized Sierpinski Self-Affine Sets
    Ming-Liang Chen
    Jing-Cheng Liu
    Jia Zheng
    The Journal of Geometric Analysis, 2024, 34
  • [26] Random self-affine multifractal Sierpinski sponges in Rd
    Olsen, Lars
    MONATSHEFTE FUR MATHEMATIK, 2011, 162 (01): : 89 - 117
  • [27] Variational formula related to the self-affine Sierpinski carpets
    Gui, Yongxin
    Li, Wenxia
    Xiao, Dongmei
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (5-6) : 593 - 603
  • [28] The Lq-spectrum of a class of graph directed self-affine measures
    Ni, Tian-Jia
    Wen, Zhi-Ying
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2009, 24 (04): : 517 - 536
  • [29] Uniformity of spectral self-affine measures
    Deng, Qi-Rong
    Chen, Jian-Bao
    ADVANCES IN MATHEMATICS, 2021, 380
  • [30] A Characterization on the Spectra of Self-Affine Measures
    Yan-Song Fu
    Journal of Fourier Analysis and Applications, 2019, 25 : 732 - 750