A Characterization on the Spectra of Self-Affine Measures

被引:0
|
作者
Yan-Song Fu
机构
[1] China University of Mining and Technology,School of Science
关键词
Self-affine measures; Spectra; Spectral measures; Compatible pairs; 42B10; 28A80; 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
A discrete set Λ⊆Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda \subseteq {\mathbb {R}}^d$$\end{document} is called a spectrum for the probability measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} if the family of functions {e2πi⟨λ,x⟩:λ∈Λ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e^{2 \pi i \langle \lambda ,\, x\rangle }: \lambda \in \Lambda \}$$\end{document} forms an orthonormal basis for the Hilbert space L2(μ).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mu ).$$\end{document} In this paper, we will give a characterization of the spectra of self-affine measures generated by compatible pairs in Rd.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d.$$\end{document} As an application, we show, for the Cantor measure μb,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{b,~q}$$\end{document} on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} with consecutive digit set and any integer p∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in {\mathbb {Z}}$$\end{document} with gcd(p,q)=1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (p,\,q)=1,$$\end{document} that the set {Λ⊆R:ΛandpΛare both spectra forμb,qand0∈Λ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \{\Lambda \subseteq {\mathbb {R}}: \Lambda \ \hbox {and} \ p\Lambda \ \text {are both spectra for }\mu _{b,~q}\text { and }0 \in \Lambda \} \end{aligned}$$\end{document}has the cardinality of the continuum.
引用
收藏
页码:732 / 750
页数:18
相关论文
共 50 条
  • [1] A Characterization on the Spectra of Self-Affine Measures
    Fu, Yan-Song
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (03) : 732 - 750
  • [2] Spectra of a class of self-affine measures
    Li, Jian-Lin
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (04) : 1086 - 1095
  • [3] On the Spectra of Self-Affine Measures with Three Digits
    Q.-R. Deng
    X.-Y. Wang
    [J]. Analysis Mathematica, 2019, 45 : 267 - 289
  • [4] On the Spectra of Self-Affine Measures with Three Digits
    Deng, Q. -R.
    Wang, X. -Y.
    [J]. ANALYSIS MATHEMATICA, 2019, 45 (02) : 267 - 289
  • [5] A class of self-affine sets and self-affine measures
    Feng, DJ
    Wang, Y
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (01) : 107 - 124
  • [6] A Class of Self-Affine Sets and Self-Affine Measures
    De-Jun Feng
    Yang Wang
    [J]. Journal of Fourier Analysis and Applications, 2005, 11 : 107 - 124
  • [7] Arbitrarily Sparse Spectra for Self-Affine Spectral Measures
    An, L. -X.
    Lai, C. -K.
    [J]. ANALYSIS MATHEMATICA, 2023, 49 (01) : 19 - 42
  • [8] Arbitrarily Sparse Spectra for Self-Affine Spectral Measures
    L.-X. An
    C.-K. Lai
    [J]. Analysis Mathematica, 2023, 49 : 19 - 42
  • [9] Tree structure of spectra of spectral self-affine measures
    Deng, Qi-Rong
    Dong, Xin-Han
    Li, Ming-Tian
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (03) : 937 - 957
  • [10] On Spectra and Spectral Eigenmatrices of Self-Affine Measures on Rn
    Chen, Ming-Liang
    Liu, Jing-Cheng
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (05)