Tiling and Spectrality for Generalized Sierpinski Self-Affine Sets

被引:0
|
作者
Ming-Liang Chen
Jing-Cheng Liu
Jia Zheng
机构
[1] Gannan Normal University,School of Mathematics and Computer Science
[2] Hunan Normal University,Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics
[3] Central China Normal University,School of Mathematics and Statistics and Hubei Key Laboratory of Mathematical Sciences
来源
关键词
Sierpinski self-affine set; Spectral set; Translational tile; Fuglede’s conjecture; Primary 28A25; 28A80; Secondary 42C05; 46C05;
D O I
暂无
中图分类号
学科分类号
摘要
Let A∈M2(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in M_2({\mathbb {Z}})$$\end{document} be an expanding integer matrix and D={d1=0,d2,d3}⊂Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=\{d_1={\textbf{0}},d_2,d_3\}\subset {\mathbb {Z}}^2$$\end{document}. It follows from Hutchinson (Indiana Univ Math J 30:713–747, 1981) that the generalized Sierpinski self-affine set T(A,D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}(A,D)$$\end{document} is the unique compact set determined by the pair (A, D) satisfing the set-valued equation AT(A,D)=⋃i=13(T(A,D)+di)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A{\textbf{T}}(A,D)=\bigcup _{i=1}^3({\textbf{T}}(A,D)+d_i)$$\end{document}. In this paper, we show that Fuglede’s conjecture holds onT(A,D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}(A,D)$$\end{document}, which states that T(A,D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}(A,D)$$\end{document} is a spectral set if and only if T(A,D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}(A,D)$$\end{document} is a translational tile. For the classical Sierpinski self-affine set T(A,Dc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}(A,D_{c})$$\end{document} with Dc={(0,0)t,(1,0)t,(0,1)t}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\text {c}}=\{(0,0)^t,(1,0)^t, (0,1)^t\}$$\end{document}, a finer characterization of tiling set is given. As an application, we find that the classical Sierpinski self-affine tile T(A,Dc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}(A,D_{\text {c}})$$\end{document} is suitable for Kolountzakis’ conjecture on product domain. This enriches the results that are now known.
引用
收藏
相关论文
共 50 条
  • [1] Tiling and Spectrality for Generalized Sierpinski Self-Affine Sets
    Chen, Ming-Liang
    Liu, Jing-Cheng
    Zheng, Jia
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)
  • [2] Spectrality of generalized Sierpinski-type self-affine measures
    Liu, Jing-Cheng
    Zhang, Ying
    Wang, Zhi-Yong
    Chen, Ming-Liang
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 55 : 129 - 148
  • [3] Spectrality of certain self-affine measures on the generalized spatial Sierpinski gasket
    Wang, Qi
    Li, Jian-Lin
    [J]. MATHEMATISCHE NACHRICHTEN, 2016, 289 (07) : 895 - 909
  • [4] Spectrality of Sierpinski-type self-affine measures
    Lu, Zheng-Yi
    Dong, Xin-Han
    Liu, Zong-Sheng
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (03)
  • [5] Non-spectrality of self-affine measures on the spatial Sierpinski gasket
    Li, Jian-Lin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (02) : 1005 - 1017
  • [6] SPECTRALITY OF SELF-AFFINE MEASURES ON THE THREE-DIMENSIONAL SIERPINSKI GASKET
    Li, Jian-Lin
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2012, 55 : 477 - 496
  • [7] Spectrality of self-affine measures and generalized compatible pairs
    Jian-Lin Li
    [J]. Monatshefte für Mathematik, 2017, 184 : 611 - 625
  • [8] Spectrality of self-affine measures and generalized compatible pairs
    Li, Jian-Lin
    [J]. MONATSHEFTE FUR MATHEMATIK, 2017, 184 (04): : 611 - 625
  • [9] Spectrality of a class of self-affine measures and related digit sets
    Yang, Ming-Shu
    [J]. ARCHIV DER MATHEMATIK, 2021, 117 (03) : 335 - 345
  • [10] Spectrality of self-affine Sierpinski-type measures on R2
    Dai, Xin-Rong
    Fu, Xiao-Ye
    Yan, Zhi-Hui
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 52 : 63 - 81